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Abstract:
We use an analogy with the statistical mechanics of gas to build the statistical mechanics of granular media.
The case of an isotropic disordered packing of equal spheres submitted to an isotropic stress is considered.
We use the assumption of a maximal disorder and the method of the Lagrange multipliers to demonstrate
that the distribution of the force moduli decreases exponentially and obeys an exponential-decay statistics.
This distribution results from the above hypotheses and from the existence of a mean stress, which acts as a
constraint. This distribution is confirmed by experiments and simulations. We apply the same method to find
the distribution of void defects of a granular assembly. It follows also an exponential-decay statistics.
_____________________________________________________________________

Despite the fact that granular materials are discontinuous materials, their mechanical
behaviour is described commonly by continuum-mechanics. This may look ridiculous
at first sight, but this works, as proved by the numerous dams and other civil-
engineering works which are still in good operating condition and which have been
built using this approach.

Besides, this is not the only example when such a continuum approach is applied
to discrete media: this is the case of the mechanics of solids and crystals; gas or liquids
have been modelled also for long using fluid mechanics. All these media are made of
atoms or molecules which are discrete elements. However, what makes the specificity
of granular materials compared to the other cases is the absence of Brownian motion
and of the analogue of temperature: indeed, it seems that temperature is a good
physical ingredient to impose existence of fluctuations which leads in turn to some
ergodic principle and which forces the characteristics of the materials to obey some
definite macroscopic rules which can be computed from statistical mechanics and
which obey some thermodynamics. On the contrary, defining the equivalence of a
temperature in granular matter does not seem to be an easy task.

The aim of this paper is to settle the bases of a statistical approach of the
mechanics of granular materials. For instance, from an experiment point of view, it has
been known from long [1-5] that the amplitude of the forces fluctuates from contact to
contact; and this has helped to cast serious doubts on the continuum approach, so that
a series of works have been performed already in the 60's and 70's to try and discuss
this problem.  However, from a theoretical point of view, it is also well known [6] that
some macroscopic quantities can be defined from a set of fluctuating quantities. This
is the case for instance of the stress tensor σij [6] which can be calculated from the
force distribution fc and the contact locations rc in a given volume V.
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One of the most important principles which found the theory of statistical
mechanics applied to a large number of states is the one which asserts that the
observable quantity is that one which corresponds to one of the most probable states.
The problem is now to define this most probable state and to calculate its probability
and the probability of the others, taking into account the fact that this state is constraint
by a series of boundary conditions. This is what we will try to perform in this paper for
the mechanics of granular matter.

In a first part, we will briefly recall how this problem has been handled in the
case of a gas and will recall the interest of using the Lagrange multiplier method [7] to
impose that constraints be satisfied. In the second part, we will apply this method to
calculate the statistical properties of the distribution of contact forces in a granular
material; for sake of simplicity, this one is assumed to be homogeneous, isotropic and
submitted to an isotropic stress; one of the main result is that the force distribution
shall decrease exponentially due to the fact that the granular medium is submitted to a
well defined stress tensor. The third part will be devoted to calculate the void
distribution in a granular medium at a given density.

One of the main interest of this paper is to recall that statistical mechanics is
based on the existence of good average quantities which are induced by strong
fluctuations at local scale, because the observable states are those ones of the most
probable ones, whose probability is much larger than the other states. This is an effect
of the large-number law. The system obeys the principle of maximum entropy, or
maximum disorder. The second interest is to recall that an exponential decay of the
probability of a discrete well-defined quantity results from the existence of constraints
at large scale and on the fact that the system is discrete. So, such an exponential decay
shall not be viewed as an anomalous behaviour compared to the Gaussian one. It just
results from the discrete nature of the system and from the constraints; the Gaussian
behaviour being got as soon as the measured quantity is no more a single discrete
quantity, but is the sum of a large number of such discrete independent quantities due
to the theorem of central-limit.

So, we do not agree with Tkachenko & Witten [8] , when they tell that an
exponential distribution of the contact force in granular materials is the demonstration
of some anomalous behaviour: it is just the demonstration of the discrete nature of the
material; this discrete nature of the system is generated obviously by the existence of
contacts, since these contacts condense the stress field into forces at local well defined
points and allow the stress to propagate. So, it exists a natural discrete quantity which
is imposed by the nature of the materials and its way of working; the paper recalls that
the exponential decay is forced simply by the existence of a mean stress.

1.  Statistical mechanics of gas: the Boltzmann distribution [7]
Let us consider a gas; it is made of N particles which are moving at different speeds vα

with a distribution p(vα); this corresponds to a kinetic energy εα=1/2mv α². Let us
consider a large number N of particles and a discrete version of this problem so that
the energy ε is assumed to take discrete values only, i.e. εi=εo+iδε, with i varying from
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1 to ̀  (δε is assumed to be small compared to the mean value of ε, but large enough so

that there are a large number Ni of particles which have the energy εi in general). So,
we are faced to distribute the N particles into the boxes characterised by εi. Assuming
that each particle can be discerned, the complexion number W for a given distribution
is:

W = N!/ (N1!…Ni!…) (1a)

In statistical physics [7], one assumes that the observed state is the most probable one;
this means that it is the state with the largest possible complexion number; so W shall
be optimum, and ln(W) too. However, it shall also correspond to a possible state of the
system. For instance, it might occur that the state has also a well-defined internal
energy U; the total number of particles N is fixed and the total volume V is given.
These conditions can be written as:

N=ΣiNi (1b)

U = Σi εiNi (1c)

Or as dU=0, dW=0, dN=0. As from Stirling relation lnN!≈ NlnN-N, these 3 conditions
can be rewritten:

d(lnW)=0= -Σi ln(Ni) dNi (2a)

0= -Σi  dNi (2b)

0= -Σi  εi dNi (2c)

A way to condense these n=3 conditions into a single one is to use the technique of the
Lagrange multipliers and to introduce n-1 coefficients α, β , …. called the Lagrange
multipliers [8]; n is the number of equations to be satisfied at the same time. The
conditions (2) become:

0= -Σi {ln(Ni)  -  α   - β εi } dNi (3)

The dNi are now independent variables and Eq.(3) shall be satisfied without any other
constraint, because we have replace Eqs. (2b & 2c) by the knowledge of α and β. In
other word, we have changed of point of view: instead of working with the micro-
canonical approach, we are now working with the grand canonical one. Eq. (3) leads to
the well known Boltzmann statistical distribution:

 Ni =  A exp{-βεi } (4)

β is 1/kT; it is iposed by U/N since it fixes the width of the distribution of kinetic
energy per atom; and A (or α) is imposed by the number of particles; both are found
by solving Eq. (1b & 1c) after integration.

We propose to use the same method to evaluate the contact-force distribution in a
granular medium. So we will assume that the distribution of force obeys some kind of
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maximum disorder (maximum of entropy) with a specific constraint which warranties
that the force distribution respects the boundary conditions and corresponds to a well-
given imposed stress field.

2.  Force distribution of an isotropic granular material :
This part examines the case of a static disordered isotropic homogeneous packing of
equal spheres submitted to an isotropic macroscopic stress tensor. It tries and models
the distribution of local forces between the grains. From an experimental point of
view, it has been known from long [1-5] that the force amplitude fluctuates from
contact to contact.  From a theoretical point of view, it is also well known [6] that a
general relation exists between the force distribution fc, the contact locations rc and the
stress tensor σij in a given volume V. The stress tensor applied on volume V writes [6]:

σij=(1/V)Σ
all contacts c in volume V

 fc
i  r

c
j   (5)

where fi ,(rj), is the component i ,(j), of the contact force ,(contact position c). Then
taking into account the facts i) that each grain is in equilibrium (Σ force applied on a grainfc=0,
Σforce applied on a grainfc ^ rc=0), ii) that each grain has the same radius R and diameter D,

and iii) taking into account the principle of action and reaction, Eq. (5) can be witten
as:

σij = (D/V)
 
Σ

all contacts c in volume V
 fc

i  n
c
j   (6)

where nc
j is the component j of the unitary vector nc defining the direction of the

contact c. Considering an isotropic homogeneous sample submitted to an isotropic
stress (σij=δij) , and labelling uc the unit vector in the direction of the force, one can
write σij in the form:

σij = (D/V)
 
Σ

all  possible values of |f|
 
in  V

  |f|{Σ
 all possible  nc

j in V having a given value of |f|

Σ
all possible  u c

i  inV, with a defined |f|
 uc

i  n
c
j}  (7)

Owing to the symmetry of the system, the first summation is null if i≠j. Let us now
assume that the distribution of orientations of f compared to the contact direction is
independent of f ; in this case, one gets <uc

i n
c
j> =<uc

i n
c
i>δij= δij<uc

 • nc>/3=δij

<cosθ>/3 where θ  is the mean angle between the contact direction and the force
direction. So, Eq. (7) can be written:

σij = (D/V) δij Σall  possible values of |f|
 
in the volume V

  |f| <cosθ>/3 (8)

Eq. (8) can be rewritten:

σij = D<cosθ>/(3V) δij Σall  possible values of |f|
 
in the volume V

  |f| N|f | (9a)

where N|f | is the number of contacts whose force modulus is in between |f| and |f|+|δδf|.
We proceed now as in the case of a gas and assume a maximum of disorder (principle
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of maximum entropy); so, the complexion number shall be maximum, but the total
number of contacts be constant. This leads to the two other Equations:

ln (W)=ln (N!)- Σ
all  possible values of |f|

 
in the volume V

  ln (N|f |!) (9b)

Ν=Σ
all  possible values of |f|

 
in the volume V

   N|f | (9c)

After derivation of Eqs.(9), one can solve this system of equation using the method of
Lagrange multiplier; one gets:

 N|f | = A exp{-β|f|} (10)

Reporting Eq. (10) in Eqs (9a & 9c) allows to calculate A and b as a function of
σ11+σ22+σ33=Tr(σσ) and of the mean number of contacts per unit volume n=N/V; this
leads to the probability distribution:

p(|f|)= N|f | /N = [nD<cosθ>/Tr(σσ)] exp{- n |f| D<cosθ>/Tr(σσ)} (10)

Indeed this probability distribution and its exponential tail seem to be in agreement
with recent numerical results [8-10], with experimental data [11-12]. It leads to similar
results as the scalar model of [13] in a much simpler way.

It  is worth noting that results (10) will remain the same if one have assumed that
all contacts where at sliding; in this case <cosθ> would be simply cosϕ, with ϕ being
the angle of solid fiction.

Of course, this approach may be oversimplified; for instance, it does not take into
account the process of building; this one might influence the dependence of <cosθ> as
a function of the force modulus |f| and might change the probability distribution. Also
existence of local correlation between forces might affect the whole distribution.
However we shall remark that Eq. (6) does not depends explicitly on the correlations
on between forces on different contacts, but just on local force and local distance of
the contact to the centre of gravity of each grain; so, if the correlation length of the
force is finite, we shall expect that force-force correlation be unimportant on the global
law, since it shall only affect the size of the discrete quantity to be used. So, it seems
that it is only in the case when the correlation length would be infinite that this
approach should be affected importantly; but in that case we should observe some kind
of order and the material behaviour should affected at a macroscopic scale also.

Anyhow, it seems that the exponential tail is a result of an optimisation which
tends to broaden the distribution while respecting the value of the mean stress. It is
possible that L. Rothenburg has argued in a similar way in his PhD. Dissertation [11].

3.  void distribution in a granular assembly:
In the same way, we may evaluate the void distribution in a granular assembly. Let us
define the void index e=Vvoids /Vsolid as the volume of voids Vvoids  divided by the
volume of solids Vsolid, and the porosity φ = Vvoids /Vtot as the void volume divided by
the total volume Vtot. As Vtot=Vvoids+Vsolids, one gets the relation φ =e/(1+e). Let us also
consider the grains as rigid. In this case any granular material contains voids; and it
exist a maximum packing density, which will be characterised by emin; oviously emin
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depends on the distribution of the size and the shape of the grains. In the same way, in
absence of cohesion, this granular material exhibits a minimum density characterised
by emax, and emax depends on the size and the shape of grains. At an intermediate
density emin<e<emax the material exhibits some disorder linked to the introduction of
additionnal voids. Let us consider that this new voids are linked to the introduction of
some kind of discrete defects, each of these defects being characterised by a given
void volume v and let us try to evaluate the distribution Nv of the number of voids of a
given volume v. We start in analysing the problem in the microcanonical approach.
This means that the total number of defects N=Σ Nv and void volume (e-
emin)Vsol=Σ vNv are fixed.

So a reasoning similar to the ones in sections 1 and 2, which assumes a maximum
of the entropy, leads to evaluate the probability of finding a defect of volume v to
follow a law of the kind:

p(v) = Nv/N = Aexp{-βv)   (11)

Assuming now that the typical size of a defect is the size of a grain vo, one gets from
the two conditions N=Σ Nv and of void volume (e-emin)Vsol=Σ vNv  :

p(v) = [(e-emin)vo)]
-1

   exp{-v/[(e-emin)vo)]}   (12)

This means that the distribution of size of the defect follows an exponential-decay law,
as it was assumed by Boutreux and de Gennes [14] in a paper describing the
compaction due to cyclic hitting. A future paper will try and adapt their approach to
the problem of the natural densification of a granular assembly due to increase of
mean pressure;  the variation of void index as a function of the pressure increase will
be determined from this microscopic modelling.

4.  Conclusion
One of the main interest of this paper is to recall that statistical mechanics is based on
the existence of good average quantities which are induced by strong fluctuations at
local scale, because the observable states are those ones of the most probable ones,
whose probability is much larger than the other states. This is an effect of the large-
number law. The system obeys the principle of maximum entropy, or maximum
disorder. It seems that such an approach was tempted already by L. Rothenburg in his
PhD. Dissertation [11].  The second interest is to recall that an exponential decay of
the probability of a discrete well-defined quantity results from the existence of
constraints at large scale and on the fact that the system is discrete. So, such an
exponential decay shall not be viewed as an anomalous behaviour compared to the
Gaussian one. It just results from the discrete nature of the system and from the
constraints; the Gaussian behaviour being got as soon as the measured quantity is no
more a single discrete quantity, but is the sum of a large number of such discrete
independent quantities due to the theorem of central-limit.

So, we do not agree with Tkachenko & Witten [8] , when they tell that an
exponential distribution of the contact force in granular materials is the demonstration
of some anomalous behaviour: it is just the demonstration of the discrete nature of the
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material; this discrete nature of the system is generated obviously by the existence of
contacts, since these contacts condense the stress field into forces at local well defined
points and allow the stress to propagate. So, it exists a natural discrete quantity which
is imposed by the nature of the materials and its way of working; the paper recalls that
the exponential decay is forced simply by the existence of a mean stress.

Assuming that an increase of void index is linked to the generation of void
defects, we were able to find the statistics of these defects using the principle of
maximum of entropy. This has allowed to find the exponential distribution which has
been used by Boutreux and de Gennes in their modelling of densification by cyclic
hitting.
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