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Abstract:
It is recalled that stress-strain incremental modelling is a common feature of most theoretical description of
the mechanical behaviour of granular material. An other commonly accepted characteristics of the
mechanical behaviour of granular material is the Rowe’s relation which links the dilatancy K= -∂εv/∂ε1 to

the stress ratio σ1/σ3 during a σ2=σ3=cste test , i.e. σ1/σ3=(1+M)(1+K). Using the incremental modelling,
this law shall be interpreted as a pseudo-Poisson coefficient. We combine these two features to solve the
problem of an axial compression under undrained condition. We demonstrate that the sample is submitted to
a bifurcation of the transcritical type when it reaches the q=Mp line. This allows to extend the notion of the
characteristic state introduced by Luong to other situations and to anisotropic systems. We show also that
these undrained tests are quite appropriate to study the characteristic-state behaviour.
_____________________________________________________________________

The aim of this paper is to point out that using the Rowe’s equation [1], which is
one of the most classical experimental result on granular materials and on other soils,
one can derive the main features of an undrained test by applying a simple incremental
modelling. In a first part we recall briefly the Rowe’s law of dilatancy, the incremental
modelling (or the hypo-elastic modelling) [2] and what their combination implies .
More details on this description can be found in [3]  . The second part describes what
one can expect from this modelling when one applies it to an undrained test (i.e. v=cste

test); the concept of characteristic state is discussed and extended in the light of the
incremental modelling. In the last part, few remarks are made concerning the difficulty
to apply a mean field treatment and its danger and concerning the existence of a well
defined energy dissipation function for granular matter; these points will be discussed
together with their implication on the validity of the incremental approach.

1.  Incremental modelling using Rowe’s relation: the basis

Rowe’s law of dilatancy: Rowe [1] has proposed some relationship which relates the
stress field (σ1, σ2= σ3) in an axi-symmetric triaxial test and the dilatancy K of the
material; K is defined as K=-δεv /δε1, where εv is the volume deformation and ε1 is the
axial one. His approach consists in considering regular arrays of cylinders and in
analysing the stress field which is required to impose the sliding of a given row of
cylinders, taking into account the stress field and the friction at contact points. As the
orientation of the row is in general not parallel to the local surfaces of contact, it
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results that i) the stress field required to impose the row motion does not correspond to
that one of the sliding along the row direction, but does correspond to a sliding parallel
to the surface of contacts, and that ii) the misfit of orientation between the row
direction and the contact surfaces leads to a volume change. As these two mechanisms
are linked together they impose some equation which links them together; this is the
Rowe’s equation.    Rowe has demonstrated that this relation can be written in such a
way that it does not depend on the nature of the 2d lattice (triangular, square,…):

 σ1/σ3 = (1+K)tan2(π/4+ϕ/2) = (1+M) (1+K) (1)

with ϕ being the friction angle. So, Rowe has generalised his results and concluded
that this relation should be valid whatever the lattice, even when it is 3d and
disordered. Experimental tests have been performed to check the validity of the
relation using axi-symmetric triaxial test at σ2= σ3= cste and relatively good agreement
has been found [1,4].

Hypoelastic modelling of plastic behaviour: let us first consider a sand sample
submitted to a given stress field (σ1, σ2= σ3) and let us consider any incremental
deformation δε=(δε1, δε2 , δε3); it is most likely that one can force the sample to
deform according to this path by applying an increment of stress δσ=(δσ1, δσ2 , δσ3);
hence, any set of infinitely small deformation  (δε1, δε2, δε3) is possible; in other
words, the evolution of this sample is governed by an incremental law which relates
the increment of stress tensor δσ to the increment of strain tensor δε so that one can
write a relation of the kind g(δε , δσ, σ)=0; furthermore, as the evolution of a sand
sample does not depend only on its present stress field but also on its story, g shall be a
function which is story dependent.

In order to characterise g, it is necessary to introduce the objectivity principle,
which states that the response δε shall be unique for a given increment δσ applied to a
given sample under specified condition; so one shall be able to write δε in the form  δε
=f(δσ,σ), where f is a function which depends on the sample story. Moreover, owing
to the existence of the quasi-static regime which states that the response δε of the
material is independent of the speed of loading (if this one is slow enough), it can be
shown that f shall be a homogeneous function of degree 1 in δσ (i.e.
f(λ δσ,σ)=λf(δσ, σ)) [2] ; this means that the response to an increment of stress δσ in
a given direction shall vary linearly with its module ||δσ|| . However, this incremental
law can not be strictly linear as a function of δσ in the whole domain of  possible
increments δσ, because such an hypothesis would generate perfect reversibility and
would be in contradiction with the well known fact that the evolution of a granular
material is not reversible.

For instance, labelling δε the response to the increment of stress δσ , and δε’ the
deformation corresponding to -δσ one shall not have δε’ = -δε but shall have δε’ ≠ -δε
[2] . This is why hypo-elastic law is commonly used to model the rheological
behaviour of this medium [2,5] .
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One of the simplest modelling consists in separating the space E of variation of
δσ into few separate subspaces Ek (with E= ∪Ek ) where the rheological law
δε=fk(δσ,σ) is strictly linear within each domain in the limit of a ||δσ|| infinitely small.
As it is currently observed experimentally that the response to a strain increment is
continuous; we will assume such a property here too, which imposes some relation
between the fk : the responses fk(δσ,σ) and fk+1(δσ,σ) at the frontier between the two
zones Ek and Ek+1 shall be equal, i.e. fk(δσ,σ) = fk+1(δσ,σ). It is worth noting that
this continuity is achieved spontaneously for two opposite directions δσ and –δσ,
since the crossing occurs at δσ=0 and due to the fact that f is homogeneous of degree 1
in δσ..
• Hypoelasticity applied to plasticity theory:  It has been demonstrated [6, 7] that this
incremental approach is able to describe systems obeying perfect plasticity theory
and/or elasto-plastic one with one or few different plastic mechanisms. In the case of
an elasto-plastic system with a single plastic mechanism, the direction of the plastic
deformation of the sample is controlled by the direction of the normal to the load
surface, and the amplitude of the plastic deformation is controlled by the hardening
law so that it depends linearly on ||δσ||; the total (elastic+plastic) deformation  is then
the sum of an elastic response and of a plastic yielding in a precise direction, both
being proportional to ||δσ|| . Since projection operators act as linearly independent
mechanism and because they can be added linearly,  it turns out that a sample obeying
to an elasto-plasticity theory with multiple-mechanism law, all being activated, shall
obey the incremental modelling with a linear response by zones in the limit of a large-
but-finite number of independent plastic mechanisms.

2.  Undrained (v=cste) compression test: basis

In the rest of the paper, a granular material will be assumed to obey such an
incremental description with a set of linear functions fk , each one being defined for a
zone; furthermore,  the number of zones will be assumed small enough, so that triaxial
tests performed at σ2=σ3=cste and at constant mean stress p (i.e.
3p= σ1o+ σ2o+ σ3o=cste) pertain to the same linear domain.

We will consider the evolution of a granular sample submitted to an axial
compression test by increasing the vertical stress σv from σo for which the volume is
kept constant (i.e. v= constant). It is called an undrained test in soil mechanics. The
initial state of the sample will be assumed isotropic and the initial stress too (i.e. σ1o
= σ2o = σ3o = σo). At last, we will consider that principal-stress and principal-strain
directions remain parallel to one another all along the test due to the symmetry of the
system.

Also, due to the symmetry of the initial state (isotropic stress, isotropic material),
the incremental response of this state shall be characterised by two zones (one for ||δσ||
>0, the other for ||δσ||<0 ), each one is characterised by two independent parameters  ,
i.e.  a pseudo Young modulus Co and a pseudo Poisson coefficient ν. So, in a given
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zone, one can write:
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As paths which are considered here concern only those ones pertaining to a single
domain Ek, and are concerned with an increase of σ1 , we will assume that there is only
one set of pseudo Young modulus 1/Co and pseudo Poisson coefficient ν of interest.
This set can be determined from triaxial test curves performed at σ2=σ3=cste, since the
slope of the curve σ1 vs. ε1 is just 1/Co and since ν  is related to the dilatancy K= -
δεv/δε1  = -(∂εv /∂ε1)σ2= σ3=cste for a test performed at σ2= σ3=cste by:

K=2ν-1 (3)

When combined with Rowe’s relation (Eq.1), Eq. (3) leads to the evolution of the
pseudo Poisson coefficient when the sample remains isotropic:

2ν=(σ1/σ3)/(1+M) (4)

3.  Prediction of an undrained compression if the sample remains isotropic

Applying the hypothesis of undrained compression (δv=δε1+δε2+δε3 =0) in Eq. (2)
imposes :

δv = 3δp (1-2ν) =0 (5)

with δp=(δσ1 +δσ2+δσ3 +)/3. This imposes then that either δp=0 or ν= ½. If one defines
q=σ1-σ3 as it is done in usual, the second condition (ν= ½) is only possible when
q=M’p=M σ3, with M’=3M/(3+M) due to Eq. (4). Generalising the notion introduced
by Luong [8], we will call this set of states the characteristic states ; they are defined
by q=M’p=M σ3 so that this set is a plane surface in the (q,p,v) phase space of soil
mechanics.  So starting from an isotropic stress (σ1=σ2=σ3), the only solution is that p
remains constant till the sample reaches the q=Mp line and the trajectory starts as a
vertical segment in the (q,p) plane till it reaches the q=M’p line. At this stage what
does it occur?

The characteristic states (i.e.q=M σ3=M’p line) are the location of a transcritical
bifurcation

When this q=M’p line is reached, the sample can evolve within two independent ways:
either it can pursue its evolution keeping p constant, or it can follow the q=M’p line;
the real trajectory the sample shall follow is this one which dissipates the less energy
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δW. This holds true as far as the experimenter does not bias the experiment by
controlling boundary conditions, and as far as the system evolves according to a
principle of minimum energy dissipation. It seems that this last principle still remain to
be demonstrated in the present case because the two paths are quite distinct so that one
cannot applied a variational study. Nevertheless, we will assume that this principle is
satisfied.

In this case, the work can be written as δW=qδε1+pδεv, = Co{δσ1² +2(1-ν) δσ2²-
4νδσ1 δσ2} and can be evaluated using Eq. (2) together with the following conditions:

δσ1=-2δσ2=-2δσ3  , δv=0 for the cste-pressure path (6a)
δq=M’ δp , δσ1=(1+M)δσ2 =(1+M)δσ3 for the ν=½ path. (6b)

After calculation, it is found that the second path dissipates less energy than the first
one since their difference δWp=cste – δWcharacteristic state is positive; for instance, when M
is 2 about and ν  ½, one gets:

δWp=cste – δWcharacteristic state ≈ (5C/18)(1+13ν)δσ1² (7)

So, it is positive . Furthermore, from Eq. (6) one gets that the two possible solution for
δσ2 when working at δσ1  imposed is of the same order of magnitude but of opposite
sign (δσ2 =-½δσ1 or δσ2=δσ1 /(1+M)).

So the trajectory changes of direction when the sample reaches the q=M’p line; it
means that the trajectory in the (q,p) plane turns suddenly on the right on the q=M’p
line when reaching this line and after having a vertical line (p=cste) . This is shown on
Fig. 1. The trajectory stops at the critical point after a while.

Figure 1: predicted trajectory of an undrained triaxial Figure 2: Typical experimental results on
compression on an isotropic sample. Hostun sand (after Flavigny) for 3

different pressures and densities.

We report on Fig. (2) typical experimental data obtained on sand. Indeed the
prediction (Fig. 1) compares well with experimental data (Fig. 2). The denser the pile
and the lower the working pressure, the better the prediction. This is due to the fact
that the denser the material, the harder it is so that the smaller the axial and radial
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deformations, and the longer the contact distribution of the grains remains isotropic;
hence the longer the response remains isotropic.

Few remarks
• Transcritical bifurcation : When reaching the characteristic line the system
undergoes a transcritical bifurcation, as it is called in the bifurcation theory and/or in
the theory of dynamical systems [10].
• Initial anisotropy : on Fig. 2 one can observe that the right-most curve does not start
perfectly vertically but that it is slightly inclined; we interpret this feature as the result
of a slight initial anisotropy which has been generated during the sample preparation.
(see next section for a discussion on anisotropy).
• Characteristic states  : this notion has been introduced by Luong [8] to characterise a
peculiar point of the sample evolution during an axisymmetric compression at
σ2=σ3=cste ; this state is characterised by the absence of contractancy and of dilatancy
and by the same stress ratio as the critical state one q=M σ3 [11-13]. This notion of
characteristic state has been applied successfully to interpret the contractant-dilatant
behaviour of soils under cyclic conditions [8-14] and to liquefaction [8-14]. However,
to the best of my knowledge, it has never been used associated with an incremental
formulation, for which it takes its whole meaning.  For instance, introducing the
characteristic state as the state characterised by a pseudo Poisson coefficient equal to
½ and telling that this state is also characterised by a stress field obeying to q=M σ3
leads at once to understand why this state does not change of volume during cyclic
experiments. Furthermore assuming that the Rowe’s relation define the pseudo
Poisson coefficient allows to understand at once that a state characterised by a stress
field q<M σ3 is always contractant and a state for which q>M σ3 is always dilatant
under cyclic conditions [15].
This is why we consider that the notion of characteristic state is quite well funded and
has to be specified in order to correspond to our own definition developed above. We
will see in the next section that this new definition of the characteristic state can be
generalised and holds true even when the system does not remain isotropic.
• the critical state is the end of the trajectory : As mentioned already, our modelling
predicts that the trajectory shall stop evolving when reaching the critical state, because
it is the boundary of the characteristic-state domain.
• development of anisotropy : one can observe on Fig. (2) that the vertical trajectory
turns left after a while; this occurs for the loser sample and/or for the higher σ3
pressure. This can be taken into account by introducing some anisotropy of the
response which develops when increasing the axial load and the deformation as we
will show now.

4.  Undrained compression test on anisotropic material:

 In this case, Eq. (2) does not hold any more and one has to replace it by a more
complex behaviour defined by the relation:
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However, due to energy consideration, Eq. (8) can be simplified since one shall have :

ν’=ν    (9)

(This is obtained by calculating the work δW= σ1 δε1+σ2 δε2+σ3 δε3 for a deformation
which is the combination of two infinitesimal deformations in two different directions
but pertaining to the same linear zone; writing that this work shall not depend on the
order of the two increment implies Eq. (9)).
So we have to evaluate the three parameters α, ν, ν”. This can be done using
experimental data of Fig. (2). We start with the final part of the trajectory, i.e. the
characteristic state segment.
• End of the trajectory, the anisotropic characteristic state: As the end of the
trajectories remains on the same line q=M’p, one shall conclude that this line does not
depend on the anisotropy and that the M’ value corresponds also to the one of the
critical-state. This allows to conclude that applying a stress increment
(δσ1≠0, δσ2 =δσ3=0) at any stage of the deformation when the system has reached the
q=M’p line will lead to no volume change. This implies that the q=M’p line is
characterised by:

ν= ν’= ½ anisotropic characteristic state  (10a)

Taking into account Eq. (10), and investigating the undrained path for which
(δσ1≠0, δσ2 =δσ3≠0) and δv=0, leads to the condition [16] :

α−ν”= ½ anisotropic characteristic state  (10b)

• Beginning of the trajectory when starting from an isotropic sample: Here we neglect
the small anisotropy observed in Fig. (2) at the origin. We remark also that the
development of the anisotropy influences the trajectory in the (q,p) plane as a second
order effect in term of stress since it is the increase of deviatoric stress which induces
the anisotropic deformation of the sample, which generates in turn the anisotropy of
the contact distribution and the anisotropy of the mechanical response.  So the sample
obeys to Eq. (2) at the origin. This condition combined with the Rowe’s equation (Eq.
1)) leads to:

α= 1 isotropic original state  (11a)

ν=ν’=ν”= 1/(2+2M) isotropic original state  (11b)

We remark by passing that Eq. (11b) leads to an initial pseudo Poisson
coefficient of 0.17 about, since typical experimental value of M is 2 about, (which
corresponds to a typical friction angle of 30°). This initial pseudo Poisson coefficient
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is not far from those ones observed experimentally quite often. This strengthens our
modelling and its incremental formulation.

So this analysis predicts that the trajectory starts vertically in the (q,p) plane.
Then it deviates from this line and reaches the q=M’p line. As the Rowe’s relation is
valid for a triaxial test at σ2=σ3=cste, this fixes the evolution of the pseudo Poisson
coefficient ν=ν’:

ν=ν’= σ1/{2σ3(1+M)} anisotropic evolution  (12)

In the same way, writing the undrained condition in terms of δq and δp imposes:

δv=0=Co{(2/3)δq(1-ν-α+ν”)+δp(1+2(α-ν”)-4ν} (13)

If Co is non zero, which holds true always in the case of undrained tests (if one
excepts the final critical state) since the system resists always according to the
classical rheological behaviour of granular matter. So, Eq. (13) leads to the
determination of the parameter α-ν” from a best fit with experimental data and using
Eq. (12):

 (α-ν”)={(4ν-1)δp+2(ν-1)δq/3}/(2δp-2/3δq) (14)

or

(α-ν”)={(4ν-1)+[2(ν-1)/3](δq/δp)}/{2-(2/3)(δq/δp)} (14)

As δq/δp is the slope of the tangent to the experimental curve of Fig. (2), the
experimental evolution (α-ν”) can be found directly indeed from the experimental
trajectory since the evolution of ν is known from Eq. (12) and since σ1 and σ3 are
given by:

σ1=(2q+p)/3 (15a)
σ3=p-q/3. (15b)

5. Discussion:
work  function, plastic  behaviour and perfect plasticity
In a previous paper [17], Stefani and the present author have proposed a simple
modelling of the granular-material rheology. It assumes that the work dissipated in the
material during a deformation can be written as:

δW =f(q,K,p)δε1 (16)

where f is a function which depends explicitly on the 3 parameters q, p and the
dilatancy K. As this dissipated energy shall be equal to the work given to the sample
from outside, this presentation allowed to predict few characteristics of the rheology of
granular materials (these ones are: uniqueness of dilatancy under isotropic stress,
existence of a unique well defined stress ratio q/p for the characteristic state (K=0) and
for the critical one, coincidence between the maximum of q and the maximum of
dilatancy...[17]). Furthermore we argued at that time i) that this presentation might be
equivalent to the one proposed by Schofield & Wroth [12] if one assumed the right
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function f and ii) that it led to the Rowe’s relation if we used another function f [18].
At this stage a question arises: is Eq. (16) in agreement or in contradiction with a

perfect-plasticity modelling? The answer can be done in few steps:
i) The fact that f depends explicitly on K seems to assume that the way the system

deforms is an internal variable which shall be found for a given process; so, this
seems to be in complete contradiction with the perfect-plasticity theory which
assumes on the contrary that the way the system deforms is fixed by the stress
field.

ii) Hence, writing an equation such as Eq. (16) imposes to use an incremental
formalism instead of a perfect plasticity modelling.

iii) But in turn, writing that the deformation path is imposed by Eq. (16) has no sense
in an incremental modelling, since this deformation depends on the direction of the
increment of stress.

iv) Thus we believe that writing an equation equivalent to Eq. (16) is just simply to
assume an incremental modelling with a variable pseudo Poisson coefficient.  This
is just what we have done all along this paper and in ref. [3].

Validity of the mean field treatment:
We have explained in the introduction how Rowe derived his relation concerning the
dilatancy mechanism. The generalisation he used is a typical mean field reasoning. As
it compares well with experimental data, it seems that his argumentation is validate by
them. So, at first sight, one is led to conclude that the perfect-plasticity theory is the
adequate way of thinking when using the Rowe’s law. However, this paper
demonstrates just the contrary and it shows the efficiency of the incremental
modelling. Thus, what is wrong in Rowe’s demonstration?

The answer to this question is: what is wrong is the compatibility of men field
approach with the perfect plasticity hypothesis, since both are incompatible to each
other, because the former assumes a set of possible deformation while the later a single
deformation path.

So, it is worth ending this paper stressing the danger of a mean field treatment: in
general it is a powerful technique which leads to quite good approximate results, when
well used. However, the assumptions which are made are not so well controlled most
often so that it may lead to erroneous thinking which may lead to a large waste of
time.  We believe that it was happening in the case of granular material mechanics
[19]. But we hope  that it will disappear soon.

6.  Conclusion:

In a previous paper, we have demonstrated the efficiency of the incremental modelling
associated to the Rowe’s law of dilatancy to understand the rheological behaviour of
granular material under oedometric test; this has allowed to derive theoretically the Ko
value of the earth pressure ratio at rest and to demonstrate that it corresponds
approximately to the best fit obtained by Jaky (Kjaky=1-sinϕ). Here we have extended
this formulation and applied it to undrained tests. We have found that the trajectory of
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the stress field start with constant pressure and ends along the line of characteristic
states. These features are observed experimentally.

Furthermore, this modelling has allowed to get a deeper understanding of the
nature of the characteristic states so that we have extended and specified the definition
of these states, especially  when anisotropy is developed. We have also shown that the
trajectory of the sample under undrained compression undergoes a trans-critical
bifurcation when it reaches the characteristic states from an initial isotropic stress.

It is remarkable that the main predicted features are observed experimentally
indeed. This seems to strengthen the concepts used and the experimental results on
which these concepts were defined; it shows also the coherence of experimental data.

At last, it is worth noting the interest of this formulation since i) it is quite simple,
ii) it is in agreement with most of the previous plastic formulation, iii) it is in
agreement with previous well accepted rheological features of soils and granular
materials and iv) it gets a simple way to explain most of the features observed
experimentally. So the investigation of this formulation has to be pursued.

At last, the validity of this approach means likely that the derivation proposed by
Rowe of the Rowe’s equation may be rather  fortuitous since it is based on a single
plastic mechanism .
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