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Abstract:
It has been proposed recently a new incremental modelling to describe the mechanics of soil. It de. It is
based on two parameters called the pseudo Young modulus E=1/Co and the pseudo Poisson coefficient ν,
which both evolve during compression. Evolution of ν is known since it shall fit the Rowe’s law of dilatancy,
but Co has to be evaluated from experiment. In this paper we proposed a way to evaluate the Co variation
from other mechanical modelling. The way cyclic behaviour of drained sample can be modelled is also
described.
_____________________________________________________________________

We have shown in a series of recent papers [1-4] that classical soil mechanics results
corresponding to both oedometric tests and constant volume tests can be described
simply with an incremental modelling  with a pseudo Poisson coefficient ν and a
pseudo Young modulus E=1/Co as far as the Pseudo Poisson coefficient fits the
Rowe's law so that ν depends on the stress ratio and obeys in the notations used in [1-
4]:

ν = σ1/[2σ3(1+M)] (1)

with the incremental law:
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As far as experiments concern oedometric and undrained behaviours and as far as
one does not want to predict the evolution of the vertical deformation ε1, there is no
need to determine the evolution of Co with the stress field. However, for other
experimental cases or when knowledge of ε1 is required one shall get an estimate of
the evolution of Co=1/E . A way to estimate this pseudo Young modulus is to use a
modelling compatible with classical soil mechanics results.

So the way which is proposed here is to identify a good modelling of soil
mechanics and to identify the variation of Co on a classical triaxial path at σ2 = σ3

=cste. In this case, the identification leads to:

 Co=-(δε1 /δσ1)σ2=cste (3)

Eq. (3) is only concerned with plastic deformation, since elastic one is negligible.
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We shall now describe a classical model.

Hujeux modelling:
We choose the Hujeux modelling [5] , since it is able to describe most of the
mechanical features of soils; in particular it can describe the irreversible (i.e. plastic)
evolution from contractant to dilatant nature of dense soil as deformation proceeds and
it respects the classical evolution of the critical state density with pressure [6]:

vc=vco - λ ln(p/po) at large deformation (4)

where λ is a coefficient,  vco is the critical volume at p=po. In order to do so, Hujeux
modelling contains two hardening mechanisms, one which is isotropic and the second
which is deviatoric. Its load function is given by:

F = q/p -  M’ [1 - b ln(p/pco)-(b/λ)εv,p] εd,p/(a+εd,p) = 0 (5)

where M’ is related to the friction angle ϕ (i.e. sin ϕ=3M’/(6+M’); M’ is the
asymptotic value of the q/p ratio obtained at large deformation during a triaxial
compression at constant lateral pressure; b and a are two parameters. Notations are as
follows: εv,p and εd,p denotes the isotropic and deviatoric parts of the plastic
deformation; εv,e and εd,e the isotropic and deviatoric parts of the elastic deformation
and the total deformation is the sum of the elastic and plastic deformations.
Deformation e will be considered as positive when the volume expands and the sample
height increases; in this case a shall be negative. Relations linking the deviatoric and
isotropic parts of the deformation and of the stress tensors to the components of the
same tensors expressed in principal directions are recalled in table 1:

εd = εd,tot = εd,e+ εd,p εv = εv,tot = εv,e+ δεv,p

ε1 = [2εd+εv]/3 ε2=ε3= [εv - εd]/3 εd = ε1 -ε2 εv = ε1 + 2 ε3

σ1 = 2q/3+p σ2=σ3=p -q/3 q= σ1 - σ2 p= [σ1 + 2 σ2]/3

Table 1:  Relations between total, elastic and plastic deformation (first line). Relations between the
deviatoric and isotropic part of the deformation and the deformation along the
principal directions (second line). Relations between the deviatoric and isotropic part
of the stress tensor and the stress along the principal directions (third line).

Typical ranges of parameters a, b, λ, M, ϕ for different soils are summed up in Table
2.

sands clays
a -0.03=-3% -.03  to
b 0.12 - 0.2 1

M’=q/p 1,2 1.2
ϕ 30°-40° 30°
λ 0.06 0.1

Table 2: Typical values of the parameters entering Hujeux modelling.
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As mentioned previously, M’ is related to the friction angle of the critical state
since sinϕ=3M’/(6+M’). Parameter a controls the deviatoric deformation at which the
change from contractant to dilatant behaviours occurs. λ controls the evolution of the
critical volume with mean pressure p, see Eq. (4); hence, pco characterises the initial
density of the material; it is called the overconsolidation pressure when soil is clay.
According to Eq. (4) the larger pco, the larger the initial density and the smaller the
initial specific volume vco. Endly, b controls the amplitude of the peak of deviatoric
stress.

Hujeux modelling obeys classical plasticity theory. So, it requires to introduce a
flow rule which governs the plastic deformation of the material and to introduce the
elastic Young modulus Ee  and the elastic Poisson coefficient νe , which control the
elastic part of the deformation. It is worth recalling that Ee and νe have not to be
confused with the pseudo Young modulus E=1/Co we are looking for and with the
pseudo Poisson coefficient ν given by Eq. (1). These coefficients Ee and νe are
assumed to be constant. This leads to the three new equations:

q = εd,e[E e /(1+ν e)]         <=> εd,e = [(1+ν  e)/E e] q (6)

p = εv,e[E e /{3(1-2ν e)}]    <=> εv,e = [3(1-2ν e)/E e] p (7)

δεv,p = δεd,p (M-q/p) (8)

Eq. (8) is the plastic flow rule introduced by Roscoe [6]. In the next, we will assume
the elastic part of deformation  to be negligible or, what is the same, Ee →∞ and νe

finite.

Finding Co:
Let us consider a sample submitted to a stress field (σ1,σ2=σ3) or (q,p), which has been
deformed (ε1,ε2=ε3) or (εv,εd). The problem is now to determine the parameters
entering Eq. (2) and there evolution with deformation and stress, i.e.  1/Co and ν. ν  is
given by Eq. (1) (or by Eq. 8). In order to find Co, one can perform an incremental
compression at σ2= σ3=cste and identify Co from the comparison of Eq. (2) and of the
experimental result. An other way to proceed is to assume that previous modelling
such as Hujeux modelling is correct and can be used to compute the experimental
response.

This is just what we will do: As the elastic part of the deformation is quite small
we can neglect it and identify the total deformation and the plastic one. As the
deformation is plastic, the load function impose dF=0 during the deformation. This
leads to a relation between δq, δp, δεd,p=δεd and δεv,p= δεv . But, since δσ2=δσ3 =0, one
gets δq=δp/3 (see Table 1), and δεv=δεd (M-q/p) owing to Eq. (8). So writing dF=0
allows to find δε1, δε2=δε3 , for a given δσ1. And to find Co=δε1/δσ1:

-Co(1+ν)=[1 - (1/3) {{M(1-b) - Mb ln(p/pco) - (Mb/λ) εv }[εd,p /(a+εd)] }] /{(Mp-

q)(Mb/λ) [ εd /(a+εd)]+ [a/(a+εd)
2
] *
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{Mp – Mbp ln(p/pco) - (Mb/λ) p εv,p}} (9a)

with ν= σ1/[2σ3(1+M)]=  (2q+3p) /[(6p -2q )(1+M)] (9b)

It is worth noting that Co is approximately inversely proportional to the applied
stress field (σ2). It is worth noting that the incremental response depends on the stress
field but also on the deformation; it is then depending on the path. This complicates
the prediction, but it is coherent with what one knows of soil behaviour.

Typical compression behaviours obtained with this modelling and at σσ2 = cste

Having determined Co by this method, one can integrate the evolution along a classical
compression path at σ2 constant using Eq. (1) and (2). Typical examples are reported
in Fig. 1, where the evolution of q/p , of v/vo and of the pseudo Young modulus are
plotted as a function of (ho-h)/ho  = -ε1  for different values of initial “overconsolidated
pressure” pco. As one expects, the results depend effectively on the initial specific
volume (or the initial pressure of overconsolidation pco) compared to the critical one;
the denser the initial sample, i.e. the larger pco, and the smaller σ2, the larger the
maximum of q/p , the larger the dilatancy effect and the larger the volume increase.
For small pco, i.e. pco=σ2, the volume is always contracting all along the compression,
and the q/p ratio deviatoric stress increases till it reaches M’. Values of pco smaller
than σ2 is not physical, but can be used. Simulations confirm that 1/Co (or E) is
approximately proportional to the stress field (σ2), the evolution of q/p occurs always
in the same range of ε1, although the precise evolution depends on the precise value of
pco for a given p .
One remarks also that when the overconsolidation pressure pco is quite large, the
pseudo Young modulus E increases at small deformation. This is because the sample
contracts during the first part of deformation. This volume decrease strengthens the
material ; the E increase is relatively smaller when σ2 is larger (for the same pco)
because the value of E is much larger since it is proportional to σ2 ; so the relative
change δE/E is smaller. This effect has not been mentioned by previous studies [5] of
Hujeux modelling ; it is probably because this effect is small and washed out by the
elasticity term which is incorporate in the model.

One can understand how the modelling leads to the mechanical behaviour
reported in Fig. 1: at large deviatoric deformation, i.e.  |εd|»|a|, the term εd/(a+εd)

remains constant, so that the system obeys the load function of the Granta gravel [6]
and depends of the specific volume v; so, Hujeux modelling is equivalent to Granta
gravel when |εd|»|a|. However, when it becomes small, i.e.  |εd|«|a|, the term

d{εd/(a+εd)} dominates dF, modifying the behaviour predicted by Granta gravel
imposing a deformation process rather independent of v.

According to this explanation, it is now easy  to modify Hujeux modelling if one
desires a non linear variation of q/p vs. ε1 in the small ε1 regime, i.e.  |εd| «|a| : One has

just to change the term εd/(a+εd)  in F ,i.e. Eq. (5), by a term εd
n/(an+εd

n). In this case,
however, Co will not be inversely proportional to the stress field (q,p), and the range of



P.Evesque/ Modelling of sand Mechanics                                                                                                - 53 –

poudres & grains 11 (3), 49-57 (Septembre 2 000)

Figure 1: Typical stress-strain behaviours of sand predicted by the Hujeux model, for different set
of parameters (see text). Parameters: a=-0.03 ;  M'=1.4 ;  b=0.15 ;  λ=0.06; pco=100Mpa
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Figure 2: Typical behaviours predicted by Hujeux modelling for two other sets of parameters:
Left-top: effect of  b=0.3 ;   Right-top: effect of  λ=0.01 ; Left-bottom: effect of a=-0.08 ;
Right-bottom: σ2 < pco  .
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interest for the deformation ε1 will depend on the stress level; it will vary with p.

Range of validity of parameters a, b, λλ, pco:
Hujeux model is sensitive to the values of the parameters. Typical examples of
variation of behaviour are reported in Fig. 2. Unphysical predictions can also be
obtained, since one can use s2 values larger than the overconsolidation values, as
shown in Fig.2. Also the range of deformation can be extended to the real one of
interest (ε=0-1).

Describing cyclic behaviours:

Experimental observation:
It is known that cyclic behaviours of soil are mainly controlled by
(i) the average value <q> at which the cycles are performed,
(ii) the amplitude ∆q of the cycles.

In particular, the contractant vs. dilatant nature of the average effect which is
obtained after each cycle depends on the value of <q>/p compared to M’: if <q>/p >

i.e.  ∆v>0 , otherwise, it contracts, i.e. ∆v<0.
 Secondly, it is known also that this mean effect depends on, and decreases with,

the number N of cycles already performed. It evolves with the number N of cycle in a
logarithmic way and scales as:

∆Nv= ∆1v /ln(N) (10)

Thirdly, the larger ∆q/p the larger the volume variation.
Fourthly, one knows also that the value of <q> - ∆q is quite important; in

particular it is known that a change of sign of q during the cycle , involving an
interchange of the axis of compression fom z to (x,y) increases strongly the cycle
effect.

When the experiment is run at constant volume, i.e.  undrained condition, cycles
performed at <q>/p > M' imposes a decrease of water pressure uw in the pore and an
increase of p, whereas cycles performed at <q>/p <M' generates at each cycle an
increase of the water pressure uw in the pore and a decrease of p. These two
phenomena stop when the value of <q>p reaches the M' value, i.e. the characteristic-
state line [7]. In the case when <q>= 0, the total mean pressure p` exerted on the grain

skeleton which is reached after a great number of cycles is then 0, so that the medium
is no more able to sustain shear so that it is liquefied. This is the liquefaction process.

It is known that the true Hujeux modelling [5], which incorporates elastic and
plastic deformation, is able to describe these phenomena [5]. It is possible also our
modelling for drained test with. It requires simply to change the hardening parameter
εd,p in F, i.e. Eq. (5), at each time; but we will describe this point a little later.

The evolution of the pseudo Poisson coefficient with stress field ensures the
compatibility with experimental data on drained samples:

Let us first show that the proposed modelling is compatible with the fact that each
cycle leads to compaction or dilatation depending on the value of the <q>/p ratio; for
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this, we limit the analysis to a cyclic uniaxial compression test performed at σ2=σ3=cste

on a perfectly drained sample: During half a period the sample is deforming
plastically; during the other half it behaves “elastically”, however as Ee→∞, elastic
deformation remains small during this second halve of period so that the total
deformation during one cycle is about the one obtained during the first half period.
The contractant/dilatant nature of each cycle is controlled by the mean value of the
pseudo Poisson coefficient ν during the first halve of cycle, i.e. ∆v=-∫3Co(1-2ν)dp
from Eq. (2), with dp=d σ1/3. Hence, in the case of small cycles, one concludes that  (i)

∆v >0   if  ν>1/2 i.e.  for <q>/p>M’ (11a)

∆v <0   if  ν <1/2 i.e.  for <q>/p<M’ (11b)

which is just what is observed.

How to model the evolution of the drained cyclic behaviour with the proposed
modelling:

So, most of the features of cyclic behaviour is described due to the evolution of ν with
the stress field described by Eq. (1); it shall also take into account the irreversible
plastic deformation which is generated during half part of the cycle. However this is
not sufficient if one wants to model the variation of the cycle effect with the number of
cycles .

In order to model this effect of cycle number, it is required to introduce a
hardening effect in F, i.e.  Eq. (5), which will diminish the amplitude of variation due
to each cycle as the number of cycle proceeds. This hardening can be controlled by the
value εd which has to be taken at the beginning of each cycle, or by making evolving
the value of the parameter a,… with N in Eq. (5) if one wants to take into account the
number N of cycles, or to divide the effective value taken by Co in Eq. (2) by Ln(N).
Furthermore, when cycles are such that q passes through 0 (alternate cycle) then εd can
be set to 0 at the beginning of each next cycles, in order to cancel the memory effect; if
cycles do not passes through q=0 but remains always positive then εd can be changed
in εd -∆εd in Eq. (5); in this case, the value of ∆εd has to depend on the relative cycle
amplitude and on the number N of cycles already performed; in order to fit the Ln(N)
effect, this means: ∆εd =f(∆q/q)/Ln(N) .
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