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Abstract:
The properties of the processes of deformation of a packing of rigid grains are analysed when the exact
distribution of the normal forces at contacts is known. Importance of grain rotation and of counter-rotation
of adjacent grains is stressed. It is shown that all deformation modes form an incomplete vectorial space D.
This allows the statistics of fluctuation to be determined. Parallel with antiferromagnetism is then drawn
and frustration of rotation is shown to be the leading dissipating mechanism. However this does not allow
to make the parallel with spinglass due to the structure of the space of deformation modes which is
vectorial, which ensures response linearity. In order to demonstrate experimentally the validity of the
approach and the existence of the incomplete vectorial space of deformation, experimental examples are
studied using regular arrays. They do demonstrate the mechanism of counter-rotation and the existence of
the vectorial space of deformation. This theory is applied to compare different experiment and simulation
results on the deformation of square and triangular lattices of rods, which can only be done through a
statistical approach based on existence of different modes of deformation. Non linear behaviour of the
modes is demonstrated experimentally; link with the continuous theory of dislocation is made.

Pacs # : 5.40 ; 45.70 ; 62.20 ; 83.70.Fn
_____________________________________________________________________

Nowadays, experiments [1] and computer simulations [2-4] on grain assembly have
made so much improvement that it becomes possible to compare their results in
detail. However, as granular matter is a complex medium, it might occur that such a
comparison be not simple: increasing the number of grains increases most likely the
number of possible deformation processes and make the mechanics of the packing
more sensitive to slight change of initial steric conditions, so that the precise
deformation of two equivalent packings under the same load may look quite different.
This makes the problem of comparing two experiments or an experiment and a
simulation quite intricate. One way to circumvent this difficulty is to treat the
deformation process as a statistical mechanics problem; however this requires in turn
to settle this mechanics in term of statistical mechanics; it is the aim of this paper; it
focuses only on the case of quasi-static deformation.

The main characteristics of the mechanics of granular matter is that it concerns
an assembly of grains in contact. These grains deform very little but the packing can
deform largely depending on the loading path. This seems to be obvious; however it
has few consequences: first of all, the notion of contact is quite important; but the way
to define these contacts does not consist in defining only their position; one needs also
to know the forces applied there. Secondly, it is also important to know how contacts
move and slide during the deformation. This second point makes the mechanics of
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granular matter quite different from other mechanics at first sight, since sliding is not
allowed in the continuum mechanics approach because it generates discontinuity of
matter. In the case of granular matter however, contact sliding, contact generation and
contact destruction are the main process of deformation; furthermore, contact sliding
is the main (or better the only) process of dissipation so that it cannot be forgotten
even for the first step of modelling. On the contrary, as it is assumed in general that
grains deform only slightly because the contact forces are small enough, one may
expect that the approximation which assumes the grains rigid (i.e. hard-grain
approximation for physicists) to be appropriate.

It is difficult to know the importance of this hypothesis about rigid grains. In
order to evaluate it, let us consider first the following simple example of an inclined
bar supported by a vertical wall and the ground, both contacts exhibiting solid
friction; this is a well known problem whose solution is as follows: if the bar, the
ground and the wall are rigid, calculation shows that the contacts forces are
undetermined if the bar is far from sliding; however, forces are known as soon as the
system is at limit of sliding. Furthermore, as soon as the bar is elastic, its deformation
allows to force the knowledge of the contact forces. So, in other words, as soon as the
system can deform (i.e. the bar can either slide or deform) the contact forces are
known.

The profound reason for the non uniqueness of the solution in the case of rigid
systems is linked to hyperstaticity [5], i.e. to the number of forces which are unknown
compared to the number of equilibrium equations: for instance, in the case of the bar,
when it cannot move the number of unknown is 4 (in 2d) and the number of
equilibrium equations is 3 (one for momentum, 2 for equilibrium of forces); so the
problem is undetermined. On the contrary, when sliding occurs, this adds two
relations which raised the indeterminacy.

Granular matter exhibits the same kind of problem and similar set of solutions
can be obtained for these media: let us assume the grains to be rigid, and let us first
consider an assembly which cannot be deformed; the exact contact force distribution
is undetermined because the number of unknown forces is too large compared to the
number of equilibrium equations; however, each time sliding can occur, this
introduces a new relation between normal and tangent forces, which reduces the
number of undetermined forces; so, instead of being hyperstatic, the system falls into
isostaticity or it is unstable; anyway, it is deformable.

Let us now assume that one knows the distribution of normal forces which will
be satisfied when the system will be sliding. This allows to know the tangent forces at
sliding contacts; in this case hyper- and isostaticity can be defined as follows: the
system will be hyperstatic [5] (i.e. non deformable) if the system dissipates more
energy than the external forces generate during the increment of deformation and it
will be at the limit of static equilibrium when both works will be equal; it will be
unstable in the other case. This is an other way to analyse the stability of a granular
material. However, this method lies on the knowledge of the distribution of normal
force. It requires then that this normal force is unique, which is not so obvious in the
case of hyperstatic systems for which the structure and the grains are both rigid and
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for which indeterminacy of local forces is a constraint. Nevertheless, this will be
assumed in the rest of the paper.

So, this paper tries and investigates the complexity of the deformation process of
a granular assembly submitted to a given stress field; it considers only systems which
can deform, for which the normal force at each contact will be supposed to be known.
This is probably a crude assumption since it is probably not guaranteed in practice
because the force distribution which ensures the assembly to be at the limit of
equilibrium within definite boundary conditions is likely not unique so that the
normal force at a given location could take few discrete values.

The paper is built as follows: the first part describes the theoretical approach
under the assumption that the distribution of normal forces at contact points is known;
work during deformation is calculated and used to show that distribution of local
slidings appear to be a consequence of an optimisation problem; this allows to define
a deformation mode, which corresponds to a set of local slidings. It is then shown that
the space of all possible modes of deformation, which correspond to a single set of
normal forces, defines an incomplete vectorial space. Consequence about the
fluctuations will be drawn from the existence of this space.

Then, in the second part, the role of grain rotations is enhanced; this allows to
draw a parallel with antiferromagnetic systems; experimental evidence of the
efficiency of this analogy is reported. Discussion pursues with the problem of
frustration of rotation, which ensures the system to dissipate energy. As soon as the
concepts of frustration and of antiferromagnetism are pronounced, one expects the
concepts of spinglass [6] to merge; however, it will be shown that this analogy cannot
be drawn in the present case since spinglass formalism requires strong non linear
behaviour and since the grain interaction exhibits a linear behaviour when the normal
forces are known (this is a consequence of the structure of vectorial space. This means
that the analogy with spin glass, if it is correct, can only be a consequence of the
multiplicity of the distribution of normal forces. However, as it will be demonstrated
in part 3, mode evolution can be non linear, which modifies this view point, which
may be too simple in many cases.

So, the third part is devoted to compare different experiment and simulations
results together, to exemplify the vectorial character of the deformation processes at
micro- scale. It will be emphasised that comparison between different results can only
be ensured in a statistical way; definition of a basis of deformation modes will be
given in the case of a square lattice of rods which are deforming.  It will be shown
also that direction of slidings is not the direction of deformation; this will help
discussing the validity of the demonstration by Rowe of his dilatancy law. The
modelling will be discussed in terms of the continuous theory of dislocation, but it
will be shown that this approach cannot be as powerful as in the case of elastic
materials because it is difficult to relate the density of dislocation to the evolution of
the stress tensor.



P.Evesque/ Deformation of a paccking of rigid grains                                                                           - 22 –

poudres & grains 11, 19-41 ( March 2 000)

1.  Theoretical background

1.a  Recalls

One can describe the problem of the mechanical deformation of a packing of rigid
grains with friction by applying the theorem of virtual works to determine the limit of
stability and the different ways the system may start deforming [7,8]. Let F(n) the
force applied to grain n by the boundary and f(n,m) the force applied to grain n by
grain m. The virtual work δW may be written as:

-δW=l/2{Σnm f(n,m).δu(n,m)} - Σn F(n).δu(n,ext) (1)

where the summation runs over the grains in contact or in contact with the
boundaries; k is the solid friction between the grains. δu(n,m) (or δu(n,ext) is any
possible (virtual or not) displacement of the point pertaining to grain n in contact with
grain m (or with the boundary). Let N the force component of  f perpendicular to the
contact surface. So, Eq. (1) can be written:

 -δW=l/2{Σnm k N(n,m)||δu(n,m)||} - Σn F(n).δu(n,ext) (2)

where ||v|| stands for the norm of vector v. If we assume that the grains in contact
remain in contact during a small deformation, any δu(n,m) may be decomposed into
the sum of three rotations, two (δΩn and δΩm) around the two centres of grains m and
n, plus one (δΩnm around the centre of any of the two grains which accounts for a
global rotation of the pair: δu(n,m)= δΩn*r(n,m) - δΩm*r(m,n) + δΩnm*[r(n,m)-
r(m,n)], where the r(n,m) are the vectors originating at the centre of grain n and
ending at the contact point with grain m; the stars stand for the vectorial product. So
Eq. (1) leads to:

 -δW=1/2{Σnm k N(n,m) ||δΩn*r(n,m)-δΩm*r(m,n)+δΩnm*[r(n,m)-r(m,n)]||}

-   Σn F(n) δu(n,ext) (3)

This way of writing the grain motion allows to keep each pair of grains n and m
in contact two by two all along the deformation; however, it does not allows to keep a
quadrilateral structure of grains in contact; in order to do so, one has to add to Eq. (3)
a set of equations relating the δΩn , δΩn', δΩnm, δΩn'm' together. Nevertheless, a first
step of approximation consists in neglecting this point and to write the evolution as
governed by Eq. (3) only.

We turn now to the determination of the deformation process: according to the
virtual work theorem [7,8], the sample is stable as far as Eq. (3) is positive whatever
the local displacements δΩm, δΩnm and δu(n,ext) are; when Eq. (3) becomes 0 for a
set [δΩm, δΩnm,..., δu(n,ext),...] (or for a series of sets), the sample is at the limit of
stability and will yield if one increases the stresses; in such a case the yielding process
is defined by one of the sets of yielding modes [δΩm,..., δΩnm,. . . ,δu(n,ext),...] which
cancel Eq. (3).
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1.b  Modes of deformation V
Let us now come back to the previous formulation (Eq. (2)). For later convenience,
we associate a single collective index (α) to every contact and we consider the
relative sliding δuα . Since the distribution of normal forces within the sandpile is
fixed, Eq. (2) is:

-δW= Σα  k N δuα  − ΣnF(n).δu(n,ext) (5)

Then the total virtual work can be written simply:

δW = - δWint + δWext (6)

with δWext = ΣnmF(n).δu(n,ext) . At the limit of stability, the minimum of δW is 0 and
the deformation is obtained by minimising δW; this deformation process is
characterised completely by the whole set {...,δuα,...}. This set {...,δuα,...} may be
viewed as a 3Nc-component vector, where Nc is the number of contacts. Let us
assume the macroscopic deformation of the pile is controlled by a single macroscopic
degree of freedom (i.e. the variation δh of height h, for example), we may
parameterise the relative sliding vectors δu by the macro-deformation variable δh:

δuα= (∂uα/∂h)δh = Vαδh (7)

This defines a 3Nc-component vector V, which is the rate of virtual sliding with
respect to the parameter δh. We will call V a mode of deformation, since V
characterises completely the way the grains move during the deformation. V
optimises the total virtual work, so that ∂W/∂h = 0. According to Eqs. (2), (6) and (7),
one has:

δh Σα  k Nα ||Vα ||= δWext (8)

♣  It is worth stressing firstly that in a triaxial test characterised by an overload q=σ1-
σ2  and a lateral pressure σ2=σ3, one may write δWext/δh = q - Kσ2 + δWf where δWf

is the friction work against walls and with -K = δv/δh is the dilatancy, where v is the
specific volume. Note that δWf can be written in a way similar to the other sliding so
that the index α can be expanded to span also over the contacts between the grains
and the walls. Within this new convention for Eqs. (5) & (7), the left hand part of Eq.
(8) includes friction with the walls and δWext/δh = q + Kσ2 . In this case, only the left
hand part of this equation is unknown from an experimental point of view.

♣  2nd remark: though a mode of deformation characterises the evolution of the system,
Eq.(8) is not an equation of evolution of the modes of deformation. Such an equation
of evolution should involve the derivative of the modes with respect to h and it should
be irreversible. Indeed, non-linearity of the friction force manifests itself in the fact
that under the same mechanical constraints if V is a mode of deformation, then -V is
not a mode of deformation in general (i.e. except in some bifurcation case, an
example of which is found in the square lattice of Fig. 2). Anyhow, Eqs. (7) and (8)
are direct relations linking the deformation mode and the global deformation δh and
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we choose all the components of the modes to be positive definite. Remark also that a
mode of deformation is not any sliding satisfying (8), but rather those sliding sets
allowed by the geometrical constraints in the packing. In order to characterise the
modes of deformation two questions are to be examined in detail: relation between the
modes and interactions between the geometry and the modes.

1.c  Space D of deformation modes V

Let us assume as in [10] that under some circumstances, the deformation can occur
along two different modes of deformation V(l) and V(2) so that {δuα(l)}=V(l) δh and
{δuα(2)}= V(2) δh are two sets of possible sliding corresponding to the same
macroscopic deformations δh. We demonstrate now that any combination V= βV(l)+
γV(2) with positive coefficient of V(l) and V(2) is also a possible mode of
deformation: first of all V(l) δh and V(2) δh optimises Eq. (2). So, as :

||β δδuα(l) + γ δuα(2)|| = δh ||β V(1) + γ V(2)||  <

< δh{β ||V(1)|| + γ ||V(2)|| = β||δuα(l)|| + γ||δuα(2)|| (9)

So, {βδδuα(l)+γδδuα(2}= δh{β ||V(1)|| + γ ||V(2)||  shall also optimise Eq. (2) if V(1) and
V(2) optimises Eq. (2).

Thus, if V(l) and V(2) pertain to the space of deformation mode D the linear
combination β V(l) + γ V(2), with positive β and γ pertains also to this space D. It
means that D has all the features of a vectorial space except that it is not complete
(modes -V are not defined in general). Hence, a basis of proper modes will determine
the space of deformations and the problem is reduced to the knowledge of these
proper modes.

One may then ask whether two different directions of sliding may coexist at a
same contact point. The answer is no if we take into account elasticity, since inclined
contact forces generate hysteresis in this case [9]. But in the case of perfectly rigid
grains, hysteresis would not exist so that a change of sliding orientation would not
dissipate energy, when possible; so in the case of rigid grain, such event are possible
and further investigation is required. This will be done in the last section.

Anyhow, it seems unlikely that this kind of situation can occur when the total
number of contacts where two directions of sliding are possible at the same time is
about the same as the total number of grains of the sample since the distribution of
sliding contacts will span over the whole pile homogeneously in this case, which
implies a homogeneous deformation of the pile in two different ways, which means in
turn very unusual conditions of grain imbrication. So, one shall expects more likely
that cases where different modes of deformation occur at the same time is obtained
when these modes are localised in different part of the sample or span over different
groups of contacts. This will be exemplified in section 3.

Indeed, this localisation of the deformation modes is observed in the case of the
triangular lattice of Fig. 1 for instance.  It is also observed in Fig. 2 in the case of
square-lattice samples where a possible mode consists in any pair of two adjacent
horizontal rows in which the disks of the upper row rolls in one way and those of the
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lower one roll in the other way. In section 2 and 3, this mode of deformation will be
called a counter-rotating mode. In this peculiar case of Fig. 2, the sliding contacts are
the contacts between grains in the same horizontal row, and the grains in two different
rows are rotating without sliding; applying the above theory lets expect that any
combination of two deformation modes will be possible at the same time; this is
indeed what it is observed. When different modes coexist, the effectively observed
mode is one of the possible combination and its statistics of real achievement should
reflect the statistics of random combinatory see section 3 for further discussion, and
for limitation). Furthermore, as the symmetry of the sample imposes that the motion
of the rows can occur in both the +x and the -x ways, the space of deformation in this
peculiar case of Fig. 2 is a complete vectorial space.

1.d  Space S of transformation modes T
From Eq. (8) , one can also define a transformation vector T and a space S of
transformation as follows:

T= {…,Tα ,…}= {…, k Nα Vα  ,…} (10)

With the norm of T given by

||T|| = Σα  k Nα ||Vα || = δW/δh (11)

In the same way, if two transformations T1 and T2 are possible, any combination
a1T1+a2T2 , with a1+a2=1 , a1>0, a2>0, is possible, provided that the set {…,Nα ,…}
are the same for T1 and T2 and that the mode evolution is linear; so the ensemble of
transformation form an incomplete vectorial space S [10]. This space is called the
space of transformations .

1.e  Statistics on the space of transformations

We have shown that a space of solutions corresponds to the optimisation problem of
deformation of a sandpile. This space has the structure of an incomplete vectorial
space if the compounds of the force normal to the contacts are fixed; this is what we
have always assumed. Hence, the only analytical procedure to determine the effective
transformation of the system is to use statistical mechanics methods. We define a
microcanonical ensemble of transformations (or deformations) by all samples with the
same δWext , the same topology and the same set {…,Nα ,…}.

The points of the space of modes are associated to independent samples which
have evolved independently. Suppose that there are n independent proper modes of
transformation. Since the space D (or S)is spanned by these modes, the general mode
of deformation (transformation) is a random vector with n random components. We
admit also that because of hardening there is a cut-off on the modulus of the modes so
that the modes evolve in a confined space.

On the other hand, the macro-transformation is related to the modulus ||T|| of the
mode T which is by definition a sum of its components (see Eq.l0). It follows that
according to the central limit theorem ||T|| has a Gaussian distribution with a positive
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mean value ||T|| and since there are n free degrees of freedom, its square mean
fluctuation ∆||T|| is given by

∆||T||/<||T||> ~ n-1/2 (12)

Since Wext is constant, and using the canonical space, one gets from Eq. (12)
also an order of magnitude of the fluctuations of δh and K:

∆|δh|/<|δh|> = ∆|δK|/<|δK|> ~ n-1/2 (13)

These fluctuations have to be interpreted as the fundamental non-reproducibility
of experiments on a sandpile. The total number of modes should be much smaller than
that of contacts or grains. However, the number of modes is expected to increase with
the number of grains. So macroscopic sandpiles contain a great number of modes and
have a well-defined predictable average behaviour.

A singular consequence of Eq. (13) is that the more one tries to control
experimentally the transformation process (by surveying the boundary conditions, for
example), the less will be the number of modes and so the larger are the fluctuations
from sample to sample. However, it might occur that the real cause of fluctuations is
the non linear character of the evolution of the deformation- (transformation-) modes
when macroscopic deformation proceeds, so that the validity domain of Eq.(13) may
be restricted to infinitely small deformation.

2.  Parallel with disordered antiferromagnetism problem of classical spins [6]

2.a  Parallel with classical antiferromagnetism

Let us now restart from Eq. (3). This equation gives the work due to the packing
deformation in terms of local rotations of grains δΩn. and of the local rotation of pairs
of grains in contact  δΩnm. An additional simplification of Eq. (3) which is discussed
in [7,8] consists in taking approximately into account the δunm terms by modifying the
r(n,m) distances to r' (n,m) and writes:

-δW=l/2{Σnm k N(n,m)||δΩn*r'(n,m)-δΩm*r'(m,n)||} - Σn F(n).δu(n,ext)            (14)

Let us now assume, as we did already, that each solution of Eq.(14) can be
parameterised with a unique infinitely small δh parameter and write that each set
{...,δΩj,...} of solution of Eq. (14) can be written as {...,δΩi=Ωi dh,...}. Secondly, we
write the Hamiltonian + of a magnetic material as + = 1/2 Σnm JnmSnSm= 1/2 Σnm

Jnm{(Sn+Sm)2 -(Sn
2 +Sm

2)}. In quantum mechanics, the operator Sn
2 has a constant and

unique eigen value. So, + may be rewritten as +1 + +o , with +1 = 1/2 Σnm

Jnm(Sn+Sm)2 , with +o= Σnm JnmSo
2= constant for a set of coupling strength Jnm. Then,

the first term of Eq. (14) looks much like + + +o; the only difference arises from the
way the vector lengths are computed: it is with the use of absolute values || in Eq.
(14), but by squaring the quantum scalar-product operator in + + +o . Nevertheless,

there is a strong analogy between + + +o and Eq. (14) if one transposes as follows:
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Jnm ↔ k N(n,m) and Sn ↔ Ωn.

Figure 1: 2 examples of the deformation of a 2d ordered triangular lattice of rods.
Top-row figures: lateral walls are rigid and allows rotation of the grains in contact with

boundaries. The first stage of deformation (4%) consists mainly in a dilation which allows to
reduce the number of contacts/grain to 4. Then, one can observes that  deformation occurs along
a localised zone inclined at 30° from vertical. This zone of 1 rod thickness separates the medium
into two distinct zones. The motion of these zones is possible due to a rolling of the grains at the
interface. This set of rolling forces the grains which are adjacent to rotate in opposite direction.
So, in each zones two adjacent grains in contact are counter-rotating to minimise dissipation in
the bulk and dissipation with walls (after W. Mezftah).

Bottom row Figures: This boundary condition imposes a no-slip boundary condition so that
counter-rotation process of Top Fig. is mainly forbidden here, except for the lateral part after
ε1=10%. So, boundary conditions play an important role.

 Furthermore, it turns out that the dimension of the interaction is important in the
problem of antiferromagnetism; this is linked to the nature of the Jnm coupling which
can be a complete matrix or only a projection matrix. And one shall distinguish
between the Ising-like, the Heisenberg-like or the 3d kinds of antiferromagnetisms. In
the Ising-like antiferromagnetism, there is a unique direction of interaction, i.e. z, and

the Hamiltonian writes: + = 1/2 Σnm JnmSnSm= 1/2 Σnm JnmSznSzm; i.e. only the

  ε1=0%           ε1=4%    ε1=6%          ε1=9%

ε1=0%   ε1=2.5%   ε1=11%   ε1=16%
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projection of spin in a precise direction z is important in the Ising case. In the
Heisenberg-like antiferromagnetism, the spins interact in two directions, i.e. x,y , and

the Sx and Sy compounds are coupled so that + = writes: + = 1/2 Σnm JnmSnSm= 1/2

Σnm Jnm{SxnSxm+ SynSym }. At last, the most general 3d case was described in the
previous paragraph.

When the study of the deformation is limited to the case of a packing of parallel
rods, the problem is obviously 2d and the rotation of the rods can occur in a single
direction perpendicular to the packing and parallel to the rod axis. So, in this case, the
analogy which shall be drawn is the one with the Ising antiferromagnetism. The
efficiency of this comparison is obvious even at first glance to Figs. (1) and (2).

Figure 2: 2 examples of the deformation of a 2d ordered square lattice of rods.
Fig. 2a: Top-row figures: the deformation occurs by the motion of pairs of horizontal lines of rods.

Top Figures: At ε1=2.5%, the single pair of bottom lines has moved towards the right. At ε1=5%
,the 6th & 7th rows have also moved, and the 12th & 13th has started moving. At 7%, the 9th & 10th

rows have also moved. Motion of rods occurs without sliding so that grains in contact are
counter-rotating (after W. Meftah).
In Fig. (1) for instance, one sees two zones separated by a diagonal array of

grains where deformation is localised; each zone is made of rods in a lozenge
structure which allows a mode of counter-rotation in which each grain in contact turn
in a direction and every other grains in the opposite direction to minimise the

ε1=0%             ε1=2.5%           ε1=5%       ε1=7%    ε1=12%

ε1=0% ε1=11%

Figure 2b:  Typical mode of
deformation of a square lattice
of rods. One remarks that
rotation of grains pertaining to
the same horizontal row are
equal. This shows that the
mode of deformation defined
in Fig. 2a applies here too; but
it is an other completion.
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dissipation. Changing the boundary condition changes the amplitude of the rotations
(Fig. 1b).

In the same way, the deformation which appears in Fig. 2 is such as the adjacent
grains from two next horizontal rows are counter-rotating (i.e. rotating in opposite
direction), whereas grains in the same horizontal row rotate in the same direction. So,
sliding occurs only between grains pertaining to the same horizontal row.

2.b  Effect of frustration
What is frustration: consider 3 grains in contact; imposing the rotation of one

grain in a direction forces the two others to rotate in the opposite direction; but if
these two other grains are in contact, this contact is sliding and dissipates energy. In
such a case, one says that this set of three grains are frustrated because at least one of
the contact is sliding. This notion can be extended to any loop made of an odd number
of grains in contact; on the contrary, any loop with an even number of grains is not
frustrated.

This notion of frustration is efficient because the k Nnm are always positive
quantities. It should be modified if k Nnm could be negative; anyhow this is not
possible in the case of solid friction. But it is because the k Nnm are always positive
quantities that one can draw the analogy with an antiferromagnetic Ising model for the
deformation of a 2d packing. Furthermore, it can be shown using results on
antiferromagnetic systems that disorder of the lattice structure can lead to  frustration
due to the variation of the coordination number from site to site and is sufficient to
generate a complex problem of optimisation. From an experimental point of view, we
observe indeed that the interaction imposes quite often a counter-rotation process for
the state which dissipates the minimum of energy, as in the case of an anti-
ferromagnetic structure where an alternate series of spin-up spin-down state is
observed. We also observe that the natural packing which allows deformation is made
of lozenges instead of triangle; this is to minimise frustration; it is also to reach a state
of isostaticity, for which the number of unknown forces shall correspond to the
number of stability equation imposed by the different grains.

Anyhow, solving Eqs. (1) or (2) is an optimisation problem which looks like the
one of minimising +1+ +o, that is to say of finding the ground state of a distribution
of magnetic spins interacting through local anti-ferromagnetic couplings of variable
strength k N(n,m). It is worth noting however that the terms r'(n,m) entering Eq. (14)
is not exactly *(rn-rm); as a consequence, the exact solution of Eq. (14) is not that one
of the optimisation of the counter-rotation problem in the precise lattice structure
which corresponds to the packing. This can be seen easily in Fig. 2 for instance:
Optimisation of counter-rotation problem on a square lattice is possible without
generation of sliding on a square lattice; on the contrary, optimisation of the exact
deformation mode leads to sliding at contacts between grains pertaining to the same
horizontal row. So, the visual solution made of counter-rotation is only an
approximate solution, which does not take into account the precise deformation
process in detail.

An other source of approximation comes from the possible fluctuations of the
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coupling coefficients k N(n,m) which may vary from point to point; this will lead the
real solution to differ from the one which is obtained from simple topological
consideration only.   This degree of approximation may look rather important because
we know from Dantu experiment [11] that the coupling strength N(n,m) varies
strongly from site to site but are aligned along l-D channels, so that effect of local
frustration of rotation is probably less efficient than it could be thought at first sight.

Anyway, one may find some local example of antiferromagnetic-like coupling in
Fig. (1) and (2); which demonstrate the efficiency of this approximation.

♣  Mean rotation shall be approximately 0: An other point which is worth noting is
that the mean rotation is approximately zero in Figs (1) & (2). The antiferromagnetic-
like model allows to understand this result as a consequence of energy minimisation;
however, it needs crude approximation and better understanding shall require much
larger effort. Anyway, we can also conclude from this modelling that if the whole
sample rotates around itself the mean rotation per grain shall be the one of the sample;
so this simple modelling allows to interpret the experimental finding reported in [12]
by Calvetti et al.

2.b  Towards spinglass or not?

It is often thought that systems which exhibits antiferromagnetic-like interactions
associated with structural disorder and frustration shall exhibit a spinglass behaviour
[6]. This is also what we thought at the beginning [7,8,13].  In this subsection we
examine this problem in some more detail and show that the system does not exhibit
spinglass behaviour if the set of coupling strength k N(n,m) is unique and well
defined and if the mode evolution is linear; however, if the system exhibit more than
one set of k N(n,m) at the same time, or if the mode evolution is non linear, spinglass
behaviour can be recovered.

♣  What is a spinglass phase: main characteristics of spinglass arises from non linear
interaction; which makes the problem of minimisation to exhibit a set of local
minima. It results from this that the solution the system can chose is not the most
optimum but only a local optimum. It can be also shown that this set of local minima
exhibits in general a hierarchical structure.

♣  the case of granular assembly with well definite unique set of {…, N(n,m),…}: in
this case the N(n,m) are fixed;  so the space D of all possible deformation forms an
incomplete vectorial space (see section 1). It results from this that one can goes from
a solution to an other one continuously. So, the optimisation problem of finding the
infinitesimal deformation exhibits a single minimum and does not exhibit local
minima. This space of deformation modes can not generate spinglass structure.
However, it can generate irreversibility and sample-dependent evolution, when the
{…, N(n,m),…} set can evolve non linearly after each incremental deformation in an
irreversible way; this will be exemplify in section 3.

♣  What does it occur when the set of {…, N(n,m),…} is not unique: in this case two
cases can be considered; in the first case, the {…, N(n,m),…} set of parameters fixed
for a long while; in the second case, the {…, N(n,m),…} set of parameters jumps
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rapidly from a configuration to an other configuration. In the first case, when the
{…,N(n,m),…} are frozen, the different deformation spaces corresponding to each
{…,N(n,m),…} configuration are disjoint. In this case, the deformation exhibits a
structure of spinglass.

In the second case, the systems jump from one {…,N(n,m),…}  configuration to
an other one rapidly; in this case it is worth using the transformation formalism
described in subsection 1.c ; as it was shown that the space S of transformation modes
T exhibits also the structure of an incomplete vectorial space, this allows to restate the
problem in a simpler manner which does not exhibit spinglass behaviour, as far as the
evolution of the modes remain linear, which is not the case in examples given in
section 3.

3.  Comparison with simulation and experimental results

From previous sections, we can sum up the situation in the following way, when the
normal forces N(n,m) are known: the space D of all deformations is an uncomplete
vectorial space so that the really observed deformation path can be any one of the
combinations of these deformations, with equal probability of achievement. This
allows to treat the problem using a statistical treatment and to associate an entropy of
deformation to the considered situation.

A consequence of this result is that the deformation of a granular sample is not
unique and that comparison between two sets of experiments shall be done in a
statistical meaning. Indeed, the non uniqueness of the response is observed in Figs.
(1) & (2), where two sets of experiments are reported each time and where these two
sets are not identical. We want to show in this section that comparison between these
results can be performed; but this requires to define the deformation modes or the
transformation ones. Let us look successively to the two cases of Fig. (1) and Fig. (2).

3.a Deformation of a triangular lattice

This deformation is reported in Fig. (1). The deformation starts with the
transformation of the triangular structure into a lozenge lattice since the grains in a
same row loose contact with adjacent grain. This deformation mode is valid for both
samples; this is due to the hyperstatic character of the triangular lattice which is hence
not deformable. Then, in both cases of Fig. 1.a & 1.b, the deformation becomes
localised on an inclined row of grains when it proceeds whose inclination is 30°
compared to vertical. It corresponds to a principal direction of the triangular lattice.

In both cases (Fig. 1.a & 1.b), this inclined row allows the triangular upper zone
to roll on the triangular bottom zone so that the dissipation is mainly produced at
contacts between adjacent grains pertaining to the inclined row forming the interface.

Further deformation proceeds in the example of Fig. (1.b) (ε1=11%, 16%); it is
achieved through the generation of a new inclined row at 30° from vertical and
symmetric from the previous one, where deformation is localised.

It means that the mechanism of localisation of deformation into a single row
inclined at 30° degree from vertical is the preferential mode of deformation for this
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kind of triangular lattice oriented as in Fig. (1). However it can occur at different
location (as shown in Fig. 1.a-ε1=9%).

Nevertheless, grain motion is in fact more complex, since Fig. (1.a) exhibits also
two systems of counter-rotation of grains, one in each triangle , i.e. top-right and
bottom-left, whose amplitude is more pronounced in the bottom-left.  This system of
grain rotation is made possible because the contacts have a lozenge structure; it is
caused most likely by some motion of the vertical and horizontal boundaries. These
sets of combined rotations are less visible in Fig. (1.b), at least when ε1<4%, for
which vertical boundaries were deformable; it occurred only for ε1>10% (Fig. 1.b) in
the two lateral zones in contact with the vertical walls; grain rotation is caused likely
there by the relaxation of the elastic deformation of the vertical walls which occurs
when the sample is too much deformed; this happens after large deformation only due
to the softness of the lateral walls which were made of expanded elastic material.

So, these modes of counter-rotations are independent of the localised
deformations and can be combined to them in the proportion  imposed by boundary
conditions. We believe that this shows the efficiency of the above theory .  This effect
may be also related to the so-called "soft modes" introduced in [5].

At last, it is worth noting that the notion of mode of deformation shall be
preserved when changing the orientation of the principal stress direction compared to
the lattice structure. However, its structure can be modified. This is indeed what can
be seen from Fig. (3), which reports the typical mode of deformation of two triangular
lattices of rods with different orientation of the lattice and submitted to loading with
the same principal stress direction. Indeed, one can observe the same kind of localised
motion occurring on a single inclined row of grains. However, the two inclinations are
different , i.e. 60° and 30° compared to horizontal, for the two lattice orientations and
correspond to the principal direction of each lattice. One observes also equal rotation
of the rods pertaining to the interface row. So, in this case the mode of deformation is
preserved but its inclination varies. This demonstrates the large influence of the local
order.

Figure 3:  vertical compression
of two triangular lattice
stuctures of rods with two
different orientations.
Note the inclination of the
localisation band which
corresponds to the
direction of a principal
axis. (after W. Meftah)
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3.b Deformation of a square lattice
Let us now turn to the case of the square lattice structure of Fig. (2). Fig. (4) is a
computer simulation of the same deformation process. Obviously, Fig. (2) and Fig.
(4) are not identical, so that one cannot conclude at first sight that the simulation gives
the same result as experiment. Furthermore, the mode of deformation looks much
more complex here than in the case of Fig. (1). However, looking carefully to the
grain motion allows to decompose the deformation mechanism into independent
modes. A simple definition of the basis of  the deformation modes is as follows: Let
us consider the bottom and the top part of the sample to translate horizontally
compared to each other, and let us consider that the separation between these two
parts is made of a single horizontal row of rods; in this case a possible definition of
the mode of deformation will be the way all the grains of this single horizontal row
move and rotate in order to allow the translation of the two parts of the sample, cf.
Fig. (5). Indeed, from Fig. (2) and (4) one sees that these grains rotate equally in the
same direction allowing the translation of the upper and lower parts without sliding;
motion of grains inside the horizontal row exhibits sliding on the contrary. So, the
deformation mode {…, δuα,…}is made of a single series of sliding vectors, which are
vertical and have the same amplitude and direction; these vectors are located at the
contacts between the grains of the considered row. The contacts between this series of
horizontal row and the upper and lower part of the sample are not sliding.

Within this definition of the modes, they are N different modes, if N is the
number of horizontal rows forming the sample. It is worth noting that the direction of
rolling of the rods can be clockwise or anticlockwise, so that the space of deformation
is a complete vectorial space (and not an uncomplete one as in section 1).  It is also
worth mentioning that one can form a new basis of deformation by combining the
previous modes together in an adequate manner, so that the definition given above is
not unique. In particular one could desire using  modes which do not exhibit mean
rotation; This can be done by combining the motion of two adjacent horizontal rows,
the first one rotating clockwise, the other one anti-clockwise. Both definitions will
lead to equivalent descriptions.

Anyhow, it is obvious at first sight that the deformation reported in Figs. (2 & 4)
can be decomposed using this basis. This demonstrates that the two results of Fig. (2)

Figure 4: Calculation
performed with
Trubal 2d by
Mahboudi &
Cambou of the
deformationof a
square lattice of
rods under
uniaxial vertical
compression.

Figure 5: Typical mode
of deformation
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and of Fig. (4) are statistically equivalent; even if they are different. So the
simulation describes correctly the experiments.

♣  Remark: An other point which is worth noting, and which is very peculiar to the
square lattice structure, is that the variation of the sample height δh scales as
2(rδθ)²=||δuα||² , where δθ is the rotation of a grain of radius r. This means that the
deformation has (i) a non linear behaviour and (ii) that this non linear behaviour
enhances the development of the selected modes. This explains why one observes in
Fig. 2 that when a mode is generated it propagates much faster than the others, till
complete expansion is reached. Due to the non linear character of the deformation
mode, the deformation looks like an irreversible process and like buckling.

However, linearity is restored for the combination of fully developed modes of
deformation of the same kind. Indeed, this is what is observed on Figs. (2) and (4), for
which the deformation progresses by the addition of fully developed modes since
δh=δh1+…+δhn, where δhi is the variation of height of the sample corresponding to
the transformation of a line from a square structure into a triangular one. So, within
this scheme δhi is quantified and equal to 2r[1-cos(30°)]. Within this scheme, the
statistics of the deformation can be settled for a given δh>>2r[1-cos(30°)]. Each mode
i, corresponding to the rolling of line i, can be either fully developed or not at all
developed.  So, considering a large sample made of N horizontal lines and
considering a small deformation n=δh/[2r(1-cos30)], (with n>>0, but n<<N), the
number of possible combinations is approximately N!/[n!(N-n)!]. This defines the
statistics when n<<N, i.e. when the probability of finding two modes in adjacent
position is negligible. For n→N, this statistics is no more valid.

3.c non linear behaviour

It is known from experiment that the deformation of granular samples exhibit memory
effect and non linear behaviour. Indeed, existence of soft modes [5] as they are
described briefly in section 3.a is a cause of hysteresis and of entropic irreversibility.

Also, examples developed in section 3.b in the case of the deformation of a
square lattice have demonstrated the non linear character of the evolution of the
modes; this breaks the linearity of the space of deformation, and generates in turn
irreversibility since once a mode is selected it develops much faster than the others.
But deformation of square lattice is not the only example of non linear behaviour: in
the case of the deformation of the triangular lattice, one sees that deformation is
localised along inclined rows; indeed, one can see on this figure that the propagation
of this mode is also non linear due to the dilatancy mechanism, as shown by Rowe
already (see section 3.e below). However, it is less non linear than for square lattice;
since this one is strong due to a bad control of the deformation: it would not exist if
the width of the sample was used instead of δh to control the deformation.

Anyhow, it appears that the non linear character is a common feature which may
play an important part in the propagation of the modes. For instance when the
propagation of the deformation is related to a decrease of the dilatancy mechanism,
one may expect an instable behaviour and the generation of spontaneously fully
developed modes of deformation, each one at one time; on the contrary, when the
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propagation of the mode of deformation is associated to an increase of the dilatancy
mechanism the deformation mode will become harder to stimulate so that a
homogeneous development of all the modes will be generated at the same time,
leading to an homogeneous deformation.

Fig. 6 reports the q=(σ1-σ3) variations of few 2d compact samples of rods in a
classical 3d triaxial set-up; the curve which exhibits the larger  quasi-periodic
variations is made of equal rods so that its packing exhibits the triangular lattice
structure; the period of variation corresponds to the lattice parameter. This
demonstrate the effect of dilatancy.

In other word, non linear nature of the mechanics of the propagation of the
deformation mode may modify the proposed theory. This may be more important in
2d than in 3d, since the dilatancy effects in localised bands of deformation are more
important in 2d than in 3d for which the notion of critical state and of critical density
looks more efficient.

3.d link with the continuous theory of dislocation

To start with, it is worth recalling that the theory of dislocation exists within two
schemes [15]; the first one is called the continuous theory of dislocation; it was built
to describe fluids; in this theory,  dislocations can take any orientation and amplitude.

The second one was built to describe the mechanics of solids and of crystals; it
assumes a lattice structure; so that the dislocations can take only a finite set of
orientations and discrete amplitudes. This second approach incorporate an elastic term
which allows to control the plastic deformation by controlling the motion of
dislocations… In this second approach, dislocation was introduced to explain the
small limit of plasticity of elastic materials, which cannot be understood if one
assumes defects similar to those of Figs. 1 & 3. It results then that these dislocations
combine with elasticity destroy these defects; they screen them and confine the lattice
anomaly on a single mesh even if elasticity perturbs the lattice structure at larger scale
(see Fig. 8).

Obviously, this second approach cannot apply to granular matter. But this will be
discussed in more details. So, the aim of this section is to show that only the former
approach applies to granular matter. The field of Burgers vector b will be defined and
found on few examples; it will correspond in fact to the deformation mode V defined
in section 1. We will show also on few examples that the dislocation field controls the
local dissipation but cannot be expressed as a function of the strain tensor.

Figure 6: variations of q=(σ 1- σ 3)
during the compression of 2d
packings of rods. The larger
variations are obtained for the
sample with equal-size rods;
periodicity corresponds to the
triangular periodic structure.
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Few recalls [14,15]:

♣  Density of dislocation α: Be s the displacement field, one can define the strain
tensor as β=grad s . Assuming also that the medium is continuous and remains
continuous during the deformation imposes the compatibility equation, i.e. rot β=0.
However, if the medium is no more continuous this compatibility equation is no more
needed so that one gets rot β=αα≠0. α is called the density of dislocation.

♣  Burgers vector b: Consider a closed loop C and any surface ψ with incremental
element dψ which starts from this loop C, and let take the limit of the loop length
tending to zero; this allows to define local quantities. In particular, one defines the
Burgers vector b as the flux of α through this surface . So

b= ∫ψ α •dψ       (15)

Within this definition, b is a field so that it depends on the precise location r.
One sees that b is related to the field of discontinuity of s: b(r)=0 if the displacement
field s is continuous at location r and b(r) is non zero when discontinuity of s exists at
point r. Further definition and examples of applications can be found in refs. [14,15].

Physical interpretation of the Burgers vector and definition of the Burgers field:
Consider a granular material submitted to a deformation δh; it is obvious that
discontinuity of s occurs only at sliding contacts; so, writing Burgers vectors as
δb(r)=b(r) δh , one gets that b(r) is zero inside a grain or at any contact between two
grains which roll without sliding; it is non zero at contacts n which slides and  it
corresponds just to the sliding vector δb(r)=b(r) δh= δun. So, one can identify the
Burgers field to the deformation mode V={…, δun,…}/δh and write the field b(r):

b(r) ={…, δun,…}/δh = V (16.a)

Caution has to be taken when  the mode of deformation does not vary linearly with δh;
in this case one shall introduce the macroscopic strain tensor ε to control the system,
where ε is assumed to derive from a continuous displacement field , i.e.  rot ε=0, and
to fit in average the macroscopic deformation <β> of the sample. This will lead to

define deformation modes Vε and Burgers vector field bε(r) as depending on ε:

 bε (r) ={…, δun,…}/ε = Vε (16.b)

Strain tensor ε alone cannot describe the field of discontinuities:
Indeed, the strain tensor ε is defined using the continuous medium approximation, so
that rot ε=0; it has to be differentiated from the true tensor β derived from the true
displacement field s, i.e. β=grad s ; this last one exhibits a non zero rotational, i.e. rot
β≠0, and contains all the discontinuities due to grain motion at sliding contacts: hence
ε cannot describe the sliding (i.e. deformation) modes V. However, ε controls the
external work δWext of Eq. (6) and it can be used to parameterise the amplitude of the
sliding field with the deformation. Indeed, when deformation modes were defined, i.e.
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Eq. (7), it was assumed that a single parameter, i.e. δh, was needed to parameterise the
deformation process; it turns out that it is not sufficient and that one needs the whole
stress tensor ε to achieve the entire parameterisation.

We see now how the present theory applies to concrete systems.

Application to particular examples:
Figs. (1-4) are examples of sample deformation with samples exhibiting different
lattice structures. In all cases, the deformation is ensured by the motion of one or few
rows of rods; this (these) rows can be inclined compared to horizontal (in the case of
Figs 1,3) or not (Figs. 2,4); but in all cases deformation looks localised on a shear
band. It is worth noting now that sliding direction occurs always perpendicularly to
the row inclination. So, this demonstrates that the shear band direction is not the
direction of Burgers vector b. However, this figures seem to indicate also that the
shear band is the zone where the dislocation field is important, although I do not know
any demonstration of this point. Fig. (7) reports two experiments on passive failure in
a systems of rods with a horizontal free surface and, hence, submitted to a non
homogeneous stress field. These two results strengthen the above analysis.

Figure 7: passive failure obtained in two triangular structures of rods with a horizontal free surface.
Deformation are localised along a set of 1 (a) or few (b) inclined rows of  rods; sliding occurs
mainly between the grains of this (these) row(s) and sliding directions are perpendicular to the
row direction(s).

It is also worth noting that such simple sliding patterns are linked probably to the
simplicity of the square or triangular structures used in these examples. However this
response is already more complicated than what could expect a priori, since one
observes (i) sliding directions which are not the localisation directions and (ii) a set of

Figure 8: example of dislocation on a 2d
triangular lattice of bubbles. (photo
W.M. Lomer, after Bragg & Nye).
The topologic defect, which is in the
centre, is only observable under
skimming view and after a sheet
rotation of 30°. This demonstrates
that elastic deformation screens the
defect.  Hence, this pattern is not
comparable to those of Figs. 1, 3, 7.
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counter-rotation process which allows to minimise the dissipation of energy,
according to the precise boundary conditions. So it is most likely that a more general
case, with a more complex internal structure, will not exhibit such simple localisation
pattern and such simple distribution of sliding, so that one shall not consider the
sliding field to be strictly localised in the "shear zone".

As a conclusion, one shall keep in mind that if the shape of the localisation
allows to define the shear zone and the direction of shear, it cannot ensure the
determination of the sliding directions nor the one of the dislocation field. This is due
simply to the fact that shearing exists already with continuum mechanics and that
sliding, dislocation field and Burgers vector do not.

The second point which is worth recalling concern the pseudo "shear banding"
which is localised on a single row of grains in simple 2d lattice structures such as the
triangular structures of Figs. (1,3,7). These zones are in fact a transition between two
compact structure which have the same directions but which have not compatible
positions. This row is an adaptive structure which is not analogous to the dislocation
mechanism which occurs in elastic materials, because in these materials, the
adaptation remains localised on one lattice mesh even if it distort the lattice directions
and lengths on further distance; it results from this that it is hard to detect; an example
of such a dislocation is shown in Fig. (8) on a bubble network. The elasticity of the
atoms or of the grains plays an important role in this mechanism [16] so that
dislocation mechanism reduces the limit of plasticity of elastic material; this is not the
case for granular materials. Furthermore, the contribution of the disturbance is
averaged within one mesh by deformation of the grains in the case of elastic material,
since it propagates to infinity in the case of rigid grains. This is why the row  along
which the deformation proceeds shall not be considered as a dislocation, but can be
better consider as a grain boundary, which is a zone of transition between two
different lattice structures.

Similar analogy with grain boundary can be drawn for the result reported on Fig.
(9): here the structure was obtained from the deformation of an initially 2d square
lattice structure with a top free surface via a horizontal compression . Indeed, this
figure shows the condensation of the square lattice structure into a triangular one. This
looks like a stress-induced phase transformation, and the boundary between the two
structures appears as the analogue of a grain boundary too.

Figure 9:  Structure obtained after deforming a
square lattice of rods with a top free surface
submitted to gravity and to horizontal
compression (after Meftah). One sees the
condensation of the square lattice into a
triangular one; analogy with grain
boundary can be drawn.
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3.e Rowe's relation
The modes of deformation exhibited in Figs. (1-4,7) seem to be good examples of the
mechanism assumed by Rowe to find his dilatancy theory [17]: Indeed they exhibit
the dilatancy mechanism described by Rowe, which is linked to the motion of the
grains inside the deformation zone; they demonstrate also that the average translation
of these grains occurs in a direction different from the principal direction of the
lattice, and these two directions define the dilatancy. However, this is all what can be
compared since the way the system dissipates in both cases are completely different:
in the figures, sliding occurs at contacts between grains pertaining to the row where
localised deformation develops so that sliding vectors are always perpendicular to the
lattice direction; whereas, in the Rowe model [17], the direction of sliding is the mean
direction of translation of the grains, since grains are assumed not to rotate.  So, it
turns out that the system of rotation and of counter-rotation leads to a sliding system
which is quite different from the one assumed by Rowe, even if the motion of the
grain centres, which characterises the strain tensor ε are identical in both cases.

Hence, experimental results demonstrate that the theoretical approach proposed
by Rowe does not describe correctly the reality, even though the macroscopic
experimental law concerning the stress-dilatancy behaviour is in agreement with the
relation proposed by Rowe. This is probably a consequence of an even number of
errors which compensate themselves two by two.

In turn, the formalism of the continuous dislocation theory can be used to settle
this problem in other words. It is known from long that the field of dislocation which
correspond to a sample deformation ε cannot be explicitly described using the field of
deformation ε alone, since these two fields are incompatible, i.e. β≠  ε; this is why one
cannot calculate explicitly the internal energy dissipated by the sample during the
deformation process; however one can calculate the energy furnished by the exterior
using the deformation ε. Anyhow, if the system is in equilibrium, each other term
shall compensate; this is what Eq. (2) expresses.

To go further, one shall introduce a mechanism based on statistical-physics
principles in order to link the two fields (i.e. the field of deformation and the field of
dislocation); this will allow to fix in average the production of dislocation for a given
stress field according to a given deformation path. Indeed, such a statement does not
exists yet for granular matter, even if it exists already for elastic materials and
explains why the motion of dislocation depends on the stress field itself in these
elastic materials.

3.f Last remark: the problem of hyperstaticity
Let us now consider a 2-D sample as in Figs. 1 and 2 containing No grains with Nc

contacts; we neglect the boundaries (for a precise discussion see [5]). The number of
unknown components is 2Nc, whereas the mechanical equilibrium leads to 3No

equations and the sliding condition to n more equations (n<Nc; n=Nc when each
contact is sliding). So, the system is hyperstatic if 2Nc is larger than n+3No; according
to the different experimental results (Figs. 1 & 2), the mean coordination number per
grain is about nc=4; as any contact pertain to 2 grains, or to a grain and to the
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boundary, n~2Nc/No so that the system shall be hyperstatic if n <2Nc- 3No=No. This
means in particular that they are more than one solution for the normal forces N(n,m).
This hyperstaticity explains also why the method used by Gherby et al. [18] is suitable
to determine the distribution of contact forces: if any rod of the system was exactly at
the limit of sliding, the mechanical equilibrium would break whatever the pushing
force in the transverse direction is.

4.  Conclusion

This paper shows in section 1 that the problem of deformation of a granular sample is
an optimisation problem which leads to define a space of deformation modes which
has the structure of an incomplete vectorial space when the set of normal forces at
contacts are known and unique. The deformation modes are simple to visualise
because they correspond to sliding directions of the contacts. However, this needs to
determine the motion and the rotation of each grain. As shown in section 3.d, it turns
out that these deformation modes define also the possible Burgers vector field, which
defines the field of dislocation. Typical examples were analysed within this scheme.

Furthermore, it was demonstrated in section 1.d that the space of deformation
modes is not the most general space which can be used, because it does not work if
more than one set of normal forces exist for a given topology of the assembly of
grains submitted to a given boundary condition. In such a case, the space of
transformation modes turns out to be more efficient. This one has also the structure of
an incomplete vectorial space. However, it is less easy to visualise.

Typical examples of the deformation of 2d regular lattice structure of rods were
given in section 2 and 3 and their comparison done. Comparison between these
different results have successfully been tempted using these spaces and a statistical
analysis was defined: in order to compare too results corresponding to the same
topology, it is needed first to determine the modes of deformation and/or
transformation which corresponds to the structure and to the boundary condition; then
to analyse whether the spectrum of proper modes are identical or not. This was
performed for triangular and square lattice, and reasonable agreement was found
between the different results, so that we could conclude that experiment looks very
much the same; it was also used to prove that experiments looks like simulation in the
case of square lattice.

At last it is worth strengthening that rotation and counter-rotations of grains play
an important in the mechanics of granular media. This is already known [19] but often
neglected. For instance, this was neglected by Rowe in his dilatancy model; this is
why his approach of the dilatancy-stress law cannot be correct even if the relation he
found seem to be verified experimentally. It is also worth recalling: (i) one shall not
assimilate a shear zone and a process of localisation of deformation to a dislocation
process, both are completely different since in the first case the medium can remain
continuous, whereas it never remain continuous in the second case; (ii) topological
incompatibility between lattice structure shall not be considered as a dislocation
process, but it can be considered as the analogue of a grain boundary in
polycrystalline systems; (iii) such a grain boundary cannot exist in elastic materials
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since the structure will adapt itself spontaneously by forming a dislocation; (iv)
anyhow, grain boundary similar to the ones found between elastic poly-crystals can be
found in granular matter mechanics when transformation of structure operates (Fig. 9)
or when boundary conditions enforces long scale disorder and disinclination of lattice
structure. At last, if dislocation combined with elasticity in classical elastic materials
allows to adapt the lattice structure to topological perturbation within a mesh, this is
not at all what one can see in granular materials; this makes the two mechanics quite
different and makes the specificity of granular matter mechanics. On the other hand,
granular-matter mechanics is concerned with 3d disordered packing most often; this
means that the material (i) contains a large number of topological defects (ii) does not
exhibit local order; this reduces most likely the scale of the long range effects
described above. However, it is likely important in 2d monodispersed packing.
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