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Abstract:
In general, the mechanics of granular matter is described using continuum mechanics approach;
this requires to introduce the concepts of stress and strain, which are averaged quantities, so that this
needs also to introduce the notion of representative elementary volume (REV) above which averaged
quantities have some physical meaning. As local quantities fluctuate spatially in granular matter; a
local measure of stress and strain shall exhibit fluctuations too, whose typical amplitude depends on
the sampling size L. This paper discusses this problem and the causes for large scale correlation.
Mean stress σ applied to a plane surface of size L² is calculated and its fluctuation amplitude δσ is
found when local forces are not correlated; it is found that δσ/σ ∝ 1/L . It is shown also that large
scale fluctuations of stress can always be interpreted as an inhomogeneous stress field and that static
equilibrium modifies the mean stress applied to a rod (in 2d), even if it does not perturb the contact
force distribution. This last result is compared to experiment; which indicates that the number N of
contacts per rod (in 2d) is 2<N<3  .

Pacs # : 5.40 ; 45.70 ; 62.20 ; 83.70.Fn
___________________________________________________________________

The engineering approach to granular materials is based on the continuum mechanics
formulated at a macroscopic level. In fact, instead of taking into account individual
grains, the approach consists in moving to a coarser scale of description by introducing
the notion of the Representative Elementary Volume (REV). At this scale, the granular
material is considered to be a continuous homogeneous medium. The size of this REV
should be large enough with respect to the individual grain size in order to define
overall quantities such as stresses and strains, but it should be small enough in order
not to hide macroscopic heterogeneity. The aim of this paper is to discuss this notion of
REV.

This notion of REV does not seem difficult within this classical continuum
mechanics framework. However, it shall be improved to incorporate the existence of
“ natural ” fluctuations of the mechanical properties : let us consider for instance the
simplest cases of classical materials; they are governed by thermodynamics, which
implies existence of time and space fluctuations at a temperature different from 0 K,
because this implies that the entropy is finite which imposes in turn that fluctuations
exist at a local scale and that their relative amplitude shall decrease with the size of the
volume; so this previous definition of REV can be convenient only in perfectly
homogeneous materials at 0 K.
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This leads to define the REV as the minimum volume from which one can define the
macroscopic properties of the material, taking into account the existence of local
fluctuations from REV to REV. These  local fluctuations shall obey classical rules of
thermodynamics ; in particular, one expects that macroscopic physical quantities obey
the central limit theorem, so that relative fluctuations decrease normally with the sample
size as any Gaussian distribution.

According to this constraint, the REV will be the minimum volume, whose
characteristics fluctuate in an uncorrelated manner and from which one is able to
describe the macroscopic quantities and their fluctuations from its distribution
characteristics. In other words, let us call ξ the typical size of this REV, and let us
consider that the physics of the system can be characterised by a set of physical
intensive quantities {⋅⋅⋅ ,αi , ⋅⋅⋅}; {⋅⋅⋅ ,αi , ⋅⋅⋅} are random variables which vary with the
spatial position; for sake of simplicity we will consider the case when the fluctuations of
αi and αj are not correlated for i≠j; then let us define {⋅⋅⋅,αi(ξ),⋅⋅⋅} the values of {⋅⋅⋅ ,αi, ⋅⋅⋅}
measured on a system of size ξ, or in other words after averaging in a given sample of
size ξ; each of these quantities fluctuates from sample to sample and is characterised by
its probability distribution which we characterise by its mean αi(ξ) and its width  δαi(ξ). If
one considers now a sample of size extension L, with L>>ξ, one shall expect that the set
of physical quantities {⋅⋅⋅ ,αi(L), ⋅⋅⋅} measured at this length scale L be a set of random
variables characterised by their means {⋅⋅⋅ , αi(L), ⋅⋅⋅} and their widths {⋅⋅⋅ , δαi(L),
⋅⋅⋅}given by

α i(L)>=α i(ξ) (1a)

δαi(L)/α i(L)= {δαi(ξ)/α i(ξ)} (ξ/L)
-m/2

(1b)

where m characterises the dimensionality of the space where the average is taken: m=2 if
the volume of averaging is a surface ; or m=3 when averaging is taken over a volume.
Relations (1a & 1b) stem from the fact that the αi are random intensive variables which
fluctuate in an uncorrelated way for length scales larger than ξ (see ref. [1] for a more
complete physical discussion). If they were extensive variables, Eq. (1b) would remain
exact [1], but Eq. (1a) would be:

α i(L)= [L/ξ]
m 

 α i(ξ) (1c)

It is worth noting that Eq. (1a-c) works even when the sampling size L/ξ is small so that
very little events are taken into account, as far as the events obey Poisson distribution
and are not correlated [1].

At last, for length scales smaller than ξ, fluctuations of αi are correlated, so that Eq.
(1a-c) are no more valid. In such a case one needs to introduce a correlation function if
one is interested byin the variations of the fluctuation amplitude within the volume size
[1].

Application to stress in granular material:
Consider a granular material made of rigid spheres of equal size (2r); these grains are in
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contact and submitted to an ensemble of forces. Consider now a plane (P) (cf. Fig. 1),
defined by its normal n, which cuts this material; it separates the material into two parts,
the “left” hand part from the “right” hand one; however, it separates the grains into
three categories: those which are entirely in the left zone, those in the right one, and
those which are cut by the plane. Nevertheless, one can divide the third series of cut
grains into two parts, those which pertain to the left (right) zone; they are these grains
whose centres pertain to the left (right) area this plane (see Fig. 1); and one can
integrate these grains in the two previous “left” and “right” zones.

In order to estimate the component of the stress tensor in the direction n, i.e. σ.σ. n,
one can try to replace the action of the left zone by a series of forces distributed on the
plane (P); this series of forces shall replace the action of the forces acting on contacts
pertaining at the same time to the two species of grains, i.e. left and right grains.
However, since the distribution of forces is applied now on the plane (P) and not
directly on the grains, one has also to introduce a distribution of torques in order to
force the static equilibrium of the grains, since equilibrium imposes sum of torques and
sum of forces acting on each grain to be equal to zero. Nevertheless, it is expected that
summation of torques shall be zero in mean because each torque depends on the
distance of the contact to the plane (P) and since this distribution shall be symmetric.

Anyway, in order to simplify the modelling one can consider a rough surface
instead of a flat plane (P); the simplest way to build this rough surface (Σ) from the
plane (P) is to link the contact points which have to be considered using the shortest
possible way. These contacts points are the contact points in the vicinity of (P) which
pertains to both the left and the right species at the same time. It results from this i) that
the surface (Σ) has the same orientation as (P) in mean, so that it is defined by the same
vector n , ii) that it surface scales as (λ/r)², where λ is the typical length measured on (P)
and r is the grain radius.

 So, be { ,α, } the set of contact points between the grains pertaining at the same
time to the two species, i.e. to grains of the two left and right zones. Be Fαα  the force at
contact α and l αα   = 2r nαα  the vector linking the two centers; be n the average direction
perpendicular to the plane (P), and nαα  the unit vector defining the contact surface at
contact α. In this case, labelling Fi

α the ith component of the force exerted by the left
grain on the right grain at contact α, the stress tensor σ σ , which we define as the
average force per unit of surface area is given by (cf. Fig. 1).

Figure 1

n 

l 

F i 

j 
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σσ  n= Σj σij nj =  Σ contacts α to be considered  Fi
αα

(2)

If one considers a very large surface (P) of area Σ (i.e. Σ—>`); in this case, one

expects that all kinds of contacts are achieved and that effects of correlation are
negligible.  So,Eq. (2) can be transformed and expressed as a function of (i) the
probability ρ(nαα ) dω d²n of finding a contact of direction nαα  in the volume dω and (ii)
the conditional probability p(nαα ,F) d#F of finding a force F at contact α if the direction of

contact surface is nαα    within d²n : Labelling dΣΣ  the element of surface area on (P), l αα  the
vector linking the centres of the two grains belonging to the contact α, and defining nαα

as l αα =2r nαα , one gets that nαα  is also the normal to the surface of contact at contact α
since the grains are spheres. So, one can write Eq. (2) as:

Çσσ .n dΣΣ  =Ç ρ(nαα ) F (2r Σ nαα .n) p(nαα ,F) d@nα d#F (3)

The term (2r Σ nαα .n) is introduced in Eq. (3) since the sampling volume defined by (P)
depends on the direction nαα  since the distance between contact α and (P) shall not be
further than (± r nαα .n), leading to Çdωα=2r nαα .n Σ.

• Mean behaviour:
Let us first consider a large (i.e. Σ—>`) surface and calculate the average stress. So,

one can use Eq. (3) and integrate it first on F; denoting Fnα  the mean value of the
contact force when the direction of contact is nαα , one gets:

σσ .n  =Ç (2r nαα .n) Fnα  ρ(nαα )   dnαα   (4)

where σσ  is the average of the local stress tensor, and where dnαα = d@nα. One can note

that Eqs. (3) and (4) are equivalent to the classical expression for σσ  as given in [2-5].
Furthermore, the mean surface Sn of (P) required to get a single contact of any direction
nαα  is:

Sn=1/{Ç(2r nαα .n) ρ(nαα )   dnαα   } (5)

• Fluctuations:
So, σσ  is the expected average value, which is measured with an infinite surface; if one
uses a smaller surface Σ of direction n, the measured value will fluctuate since σΣn

depends on the local position; however, if one repeats the measurement in a lot of
different points and take the mean, one gets the average given by Eq. (4) too. The
fluctuations of σΣn are characterised by the second moment of the distribution, which we
label δσΣn. Calling So,n the minimum size of the surface, above which no correlation of
forces occur, then applying Eq. (1b) one gets:

δσΣn = (So,n /Σn)
1/2

 δσSo,n (6)
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Case without correlation:
In order to estimate the amplitude of these fluctuations, one can start considering that
forces are not correlated, so that contact force F is a random variable which varies
around a mean; obviously the mean itself Fnα  depends on  the contact direction nαα  , as
it is already written in Eq. (4); the distribution of Fnα. is also characterised by its second
moment δ@(Fnα), which may depend on the direction nαα   too. So, in this case

-   nαα  fluctuates in direction
-   for a given nαα , the force F fluctuates in direction and intensity;

Let us now consider a large surface, of size Σ, it applies a given force FΣΣ  on the granular
material; as it contains a large number of different contacts, this force is the sum of
random variables; be Nα d@nα the exact number of contacts having the direction nαα

within d@nα, and Nα d@nα its mean; as it is a random Poisson process, this number

fluctuates from surface to surface and its second moment is δ@(Nα) = Nα d@nα  ; the forces

exerted by this category of contact is a random variable which is the sum of Nα d@nα

forces which have the same mean Fnα  and same second moment δ@(Fnα) . It results from

this that these contacts contribute to the total force FΣΣ

Fnα  Nα d@nα  in mean  and (7a)

δ@(Fnα) Nα d@nα as a standard square deviation   (7b)

with Nα d@nα =  (2r Σ nαα .n) ρ(nαα ) d@nα (7c)

In the same way, summation over the different categories (i.e. orientations) of contacts
leads  to evaluate

FΣΣ n = Ç Fnα  Nα d@nα  in mean  and (8a)

δ@(FΣΣ n) = Ç δ@(Fnα)  Nα d@nα as a standard square deviation   (8b)

One remarks that Eq. (8a) is equivalent to Eq. (5) as expected, and that Eq. (8b) leads to
the mean square deviation:

δ@(FΣΣ n) = Σ Ç δ@(Fnα)  (2r nαα .n) ρ(nαα ) d@nα    (9)

This Eq. (9) is equivalent to Eq. (6), leading to a standard deviation:

δσΣn = δ(FΣΣ n)/Σ = (Σ)
-1/2

  {Ç δ@(Fnα)  (2r nαα .n) ρ(nαα ) d@nα }
1/2

(10)

which defines {So,n}
1/2

 δσSo,n .
It is worth noting that ρ(nα), Fnα and δ@(Fnα) has not always the spherical symmetry,

so that FΣΣ n and δσΣn do depend on direction n. This is the general case when
deformation has destroyed the initial isotropic distribution of contacts and forces and
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when stress is not isotropic.
The mathematical treatment of cases where correlation exists does not differ from

the previous one; however the result depends strongly on the kind of correlation. So we
will limit here to describe of few different kinds of possible correlation and discuss there
effects in the next section.

• Analysis of the causes of fluctuation correlation:
Different kinds of correlation can occur in granular matter, which can be classified using
the form of Eq. (4): it shows that physical cases separate into cases where correlation
exist between i) the direction of contact surfaces, ii) the direction and amplitude of mean
contact forces, iii) the local density and iv) the local structure.

• Steric correlation: the first kind of correlation is a steric one: Owing to the form of Eqs.
(2-4) , correlation between directions of force shall exist for distances smaller than r or 2r,
since orientations of forces are partly driven by the direction of the surface of the
contact nα, and since the directions of 2 contact surfaces nαα  and nαα ’ pertaining to the
same sphere are correlated and depend on the distance between the two contacts, as
shown in Fig. 2. This correlation can probably propagate to distance equal to few (1 or
2) grain diameters in disordered packings; however it can propagate on much larger
scales when packings are 2d and ordered (Fig. 3-left).

Figure 2: i) correlation exists between the direction of contacts nα &  nα' and the distance rαα '

between the two contacts α & α' . This correlation is obvious inside a given sphere; it exists
also for adjacent grains.

• 2d regular packing effects: In 2d, packings of identical grains are quite often ordered; in
this case the grains form a local crystalline structure of well defined symmetry and
orientation of principal axis. Most of the time the structure obtained is the triangular
one, since it is the densest packing both at the local scale and at the macroscopic scale.
This induces a long range correlation of the direction nαα  of contacts; however, at large
scale, long range decorrelation of nαα  can occur generated by different mechanisms: i) a
change of orientation of the principal axis of the lattice can be induced by a change of
orientation of boundary or by a curved boundary or by the deformation process itself ;
ii) a change of the lattice structure (from square to triangular) can be imposed by the
deformation process and mechanical instability (see Fig. 3). In general, such

nα

nα’
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decorrelation process involves large length scale, and the change of lattice structure or
of  inclination can be seen as occurring at a grain boundary, if one takes the analogy
with what occurs in classic polycrystalline systems.

Figure 3: Different cases of large length scale correlation of topological arrangements.
Left: this packing was generated from a square lattice after horizontal deformation; it is made

of a combination of a square lattice and of a triangular one, with defined orientations which
are imposed by boundary conditions and initial state; it looks like a phase transformation.

Right: disordered packing which is made of "bands of square lattice structure" plus some "point-
like" defects dispersed in a rather triangular structure; the typical correlation length of the
packing structure is 6-to-10 grains about.

Nevertheless, when crystalline zones are large, averaging Fα of contact forces is
possible for each discrete set of contact direction. Furthermore, as continuity of stress
shall be insured when crossing a zone boundary, this implies the existence of some
relationships gi{…, Fa(phaseA), …,…, Fj(phaseB),…}=0 between the different mean
contact forces of two adjacent phases.

• Correlation induced by existence of local force paths: An other cause of correlation is the
existence of force paths which spread over the medium as it was demonstrated first by
Dantu [6, 7] and confirmed by other workers [8-10]. At first sight, this structure is locally
inhomogeneous, since one observes that the series of stressed grains formed a
connected network, which contain series of holes made of unstressed zones. This
connected structure has a typical size of few grains, which lets think that the correlation
is few grain diameters. It is most likely, even if it is not demonstrated yet, that forces are
not correlated at larger scale; this comes from the assumption that a good stress tensor
can be defined at large scale (see one section further).

Such stress paths introduce a correlation between forces at small length scale in
Eq.  (3).

• correlation induced by static equilibrium: As a matter of fact static equilibrium generates
short and long range correlation effect:
- at short range, owing to the fact that each grain is in equilibrium, the sum of the
contact forces and of torques shall be 0 on each grain. This reduces the number of free
independent forces NFi on each grain i to the number Nci -2 of contacts on this grain
minus 2. This changes the distribution compared to the non correlated case.

For instance, let us consider the experiment performed in [11] on a 2d packing of
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rods submitted to an average 2d stress, for which one wants to study the statistics of
contact forces. The way it was proceeded consisted in measuring the force needed to
push each rod parallel to its axis, z (i.e. z is perpendicular to the applied macroscopic 2d
stress field). So, the experimental conditions imposed that the projection in the xy plane
of the considered contact forces have a direction parallel to the normal of contact, since
this contact is sliding in direction z; so the maximum force of friction which can be
mobilised on each grain in the z direction is proportional to the sum of the modulus of
the projections on the xy plane of the considered contact forces, the coefficient of
proportionality being the friction coefficient.  Now, owing to the fact that each grain is
in equilibrium, the sum of the contact forces and of torques shall be 0 on each grain.
This reduces the number of free independent forces NFi on grain i to the number Nci -1
instead of Nci. This influences the shape of the distribution at small forces since this
distribution is given by:

P(Ffriction) dFfriction = Çall cases ensuring  F=ΣiFi dF1…dFNi p(F1) … p(FNi) (11)

In the limit of small forces and since p(Fcontact) = exp(-F/Fo) =cste when F→0 [3], this
equation behaves as:

P(Ffriction) dFfriction ∝ (Fcontact)Ni-2 dFcontact     when F→0 (12)

where Ni is the number of contact of grain i and where Ffriction and Fcontact {P(Ffriction),
p(Fcontact)}are respectively the modulus of the friction force and the contact force {and
their probability distribution}. So taking into account the experimental curve reported in
[11] for P(Ffriction)  , which starts rather vertically at small force, one can conclude that the
mean number of contacts in a 2d sample is smaller than 3 and larger than 2 in the case of
little stressed rods. Indeed, this seems in agreement with what simulation gives in the
case of 2d packing with friction [12].Indeed, a calculation which does not take account
of force correlation would lead to P(Ffric tion) ∝ (Fcontact)Ni-1 when F→0 , leading to a
number of contact smaller than 2, which is impossible.

It is worth noting that the reasoning of last paragraph jumped over some difficulty
which is discussed now on: the exact number of contacts is an integer for each grain.
So, Ni-2 shall be an integer in Eq. (12); and Eq. (12) holds for the series of grains which
has the same number of contact; hence Eq. (12) calculates PNi(Ffriction). To get the exact
distribution P(Ffriction), one has to average on the distribution of Ni; as Ni varies from 2 to
6 in the case of rods of equal diameter, with a distribution W(Ni), one expects that
P(Ffriction) has a polynomial form, if W(Ni) does not depend on Ffriction:

P(Ffriction) ∝ Σi=2 to 6  W(Ni) (Fcontact)Ni-2  (13)

Eq. (13) is hard to reduce to (Fcontact)Ni-2 as in Eq. (12), if  W(Ni) is not a function of Ffriction.
Under these conditions, it seems that result [11] implies that the contact distribution and
the mean number of contact per grain is a function of the local applied force Ffriction.
Conversely, this seems to indicate that elasticity may play some part in the contact
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distribution. However, this modelling shall be improved before complete conclusion can
be settled.

- An other question which is raised by the existence of static equilibrium is the
following: Does it generate large scale effects? As a matter of fact, it is not possible to
conclude surely at the present time. However, one can believe that such effects shall
not be so strong since they exist also for classical crystals, poly-crystals,  glasses and
other solids where they are never considered (to the best of my knowledge). For
instance, if one considers a large particle in a liquid, one knows that it is submitted to a
Brownian motion which is generated by the fluctuations of local stress; this is due to
the fact that static equilibrium is not ensured in liquids. Turning now to the case of an
inclusion in a solid, this particle is immovable because static equilibrium is ensured;
however, this never implies that the stress field exhibits no spatial fluctuation, but it
implies just that the fluctuations are spatially correlated to ensure equilibrium. The case
of inhomogeneous stress field of a glassy material is a good example. This is discussed
in the next subsections.

- However,  before starting this discussion, it is worth emphasising that the stress which
is considered in Eqs. (3), (6) & (10) concern the force exerted on a surface; (i) this mean
that these results are not affected by correlation due to local equilibrium; (ii) an other
consequence is that the noise on σσ  scales as 1/L. Such results are general when all
forces acting on the medium are contact forces. However, more care shall be taken when
external forces have long range action; this is the case for instance when electric,
magnetic and/or gravitational forces have to be considered.

• Large length-scale heterogeneity of the distribution of contact forces: non homogeneous stress
field:

Consider a macroscopic volume of size L²h, such as L>>D=2r (see Fig.4).

Figure 4: Typical volume used to measure the stress σ; L>>D=2r and h<<L, with D the diameter of
grains.

Static equilibrium imposes:

σzz(z) L2= σzz(z+h) L2 - 2(Lh){σzy(z)+ σzx } (14)

L 

L 

h 
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or
σzz(z) = σzz(z+h) - 2(h/L){σzy(z)+ σzx(z)} (15)

So, Eq. (15) imposes that the difference between the stress tensor σzz(z+h) - σzz(z) at
large h, i.e. h>>D, shall always overpass the natural fluctuation amplitude given by Eq.
(1c or 6), i.e. δσzz ≈ σzz/L if σxz ≠0. This means that variations of σzz(z) larger than the
typical fluctuations can be interpreted as linked to stress field variations.

To conclude the present discussion, it means that large length scale anomalous
fluctuations of the contact force distribution can always be interpreted as linked to the
heterogeneity of the stress field. This assumption is assumed implicitly quite often [13].

• "stress-strain" correlation: As the mechanical energy delivered to a granular packing
which deforms is the product of stress by strain, it is obvious that stress-strain
correlation is directly related to a physical quantity. However, this is by far not so
simple at a microscopic level as it will be discussed now.

At a local scale, it is clear that the dissipation is due to the sliding of grains in
contact. And the dissipation is the summation over all contacts of the scalar product of
the contact force by the sliding vector. Contacts which do not slide do not dissipate. So
if one knows the sliding field and the contact force distribution one can estimate the
dissipation.

On the other hand, the force distribution is related to the stress tensor, as it was
studied previously; but there is in principle no way to relate the strain tensor to the
sliding field, because it is known from plasticity theory that the two fields are
incompatible, since the first one ensures continuity of the space and the other one
assumes just the contrary. Furthermore, this problem can not be solved as it is done in
other cases, such as crystals,…. In order to show that, the next paragraph recalls first
briefly the way it is proceeded in case of elastic material forced into plastic deformation.

- Plastic theory of crystals: When plasticity theory is applied to elasto-plastic materials, it
is done within the model of plastic deformation of crystals, for which plastic
deformations are generated via the generation and propagation of dislocations; these
dislocations are well defined and the number of different processes is very little. It
results from this that the energy of generation and evolution of each process can be
calculated, at least approximately, and its interaction with the “elastic” phase is well
defined. So knowing the temperature of the material and the stress field and the stress
increment, one can use statistical mechanics to predict the process of plastic
deformation. So, the evolution of the material shall obey to classical thermodynamics.
Hence, this imposes the existence of some equilibrium between the plastic deformation
process and the elastic one; and the existence of some stress-strain relation which is
called the constitutive law.

- In the case of granular matter, the existence of such a law is not obvious since elastic
deformation appears to be quite small and since it is difficult to link the stress evolution



P.Evesque/ what is the REV for granular matter                                                                          - 16 -

poudres & grains 11, 6-17 (20 janvier 2000)

to the sliding field and the strain field. Nevertheless, the existence of such a stress-
strain law seems to exist, because a series of finite-element codes do exist, which are all
based on this assumption (i.e. existence of a rheological law) and which predict
relatively correctly classical mechanical behaviours. However each code has its own
formulation of the law, which turn out to be intricate; this is not a problem, since they all
describe the same set of experimental data; it means just that the laws used are too
sophisticated.

It is worth mentioning that a much simpler formulation of this law was  proposed
recently [14,15]; its signature is the existence of the stress-dilatancy law, known as the
Rowe's law. It can be shown [13,14] that this relation is equivalent to introduce a
dissipation function which depends on stress and deformation. At last, it is worth
mentioning that the way Rowe derived his law seems not correct [14,15] .

I have no physical explanation, based on a microscopic model, for the existence of
such a constitutive stress-strain relationship. However, it seems likely to be related to
the existence of a statistical treatment of the sliding field, so that the sliding field should
obey at the same time to some maximum-entropy principle and to some optimum-
dissipation principle, which would allow to link stress and strain increments.

If this hypothesis turns out right, the maximum entropy principle should result in
the existence of a homogeneous deformation process till the mechanical system remains
stable, since maximum of entropy shall require that the number of different deformation
process shall increase. However, when the mechanical system becomes unstable
localisation of deformation occurs. But all this is quite hypothetical.
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