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Abstract: 
The problem of Maxwell’s demon in granular gas is revisited in the case of a mixture of two particle species. 
The phase space is found to be 2d. Existence of cyclic orbits, with periodic segregation, is demonstrated by 
investigating the case of 2 kinds of particles with identical parameters but different masses. At large excitation 
equi-partition shall be obtained, but convergence towards the steady state is found in spiral. The spiral 
convergence is imposed due to the rule of kinetic-energy transfer between the two species. It results that the 
most probable scenario is that the steady state breaks into cyclic orbit at lower amplitude of vibration below a 
bifurcation threshold. The nature of  the bifurcation is not known; it can be critical, subcritical, hypercritical 
or can exhibit a tri-critical point as varying the control parameters. No conclusion is obtained at very low 
vibration amplitude: it is guessed two scenarii under further cooling which generates Maxwell's demon and 
segregation..   

Pacs # : 5.40 ; 45.70 ; 62.20 ; 83.70.Fn 
 

Let us consider the following problem which is connected to the Maxwell’s demon 
effect in granular gas [1-4]: be two adjacent vertical halve boxes (labelled 1 and 2 
hereafter) connected by a horizontal slit at a given height h from the bottom; this slit 
has a given width w. The two boxes are assumed to be identical and shaken vertically; 
if the two boxes contain a single kind of particles, one gets the so-called experiment on 
“Maxwell’s demon in granular gas”.  

Take now the possibility of having two species of grains, say X, Y, with different 
dissipation or size and shake the whole set-up vertically at frequency fr=ω/(2π) and 
amplitude A. Is this problem of the same nature as the classic Maxwell’s demon in 
granular gas? The response seems to be “yes” from the literature [5]. But is it true? 
How does it combine with a segregation effect for instance? 

So, one should answer “no”, just for safety, simply because the dimension of the 
phase space is increased due to the number of free unknowns. These unknowns are the 
numbers Nx1, Nx2, Ny1, Ny2 of particles in each box, and their time evolution, so that 
behaviour complexity is increased, and this should be observed in some range of 
parameters. But can one observe a chaotic behaviour? The aim of this paper is to try to 
characterise the complexity of the system. 

In order to simplify the argumentation, the paper considers first the case when 
(X,Y) particles are spherical and identical, i.e. same radius rx=ry, same restitution 
coefficient, same solid friction, except that their masses Mx & My are assumed to be 
different; say Mx>My . It considers also only the case when boxes are identical and 
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contain a small number of layers and the slit width w is small, so that the operating 
conditions at work for a dilute granular gas are achieved, for which the flows J1→2 and 
J2→1  control the physics of particle migration. In fact, the paper will prove that one 
shall observe in some circumstances that the (X,Y) particles separate partly and that 
some periodic oscillation of population occurs; this means in particular that the content 
of each box shall not be steady but varies periodically with time.  

Also, the paper demonstrates that the phase space dimension of the system is 2 
when the experiment operates at constant total number of each kind of particles, as far 
as the vibration excitation can be considered as continuous. So the attractors cannot be 
chaotic, but they can be limit-cycles (i.e. indicating periodic evolution) or points (i.e. 
this last case indicates a steady state regime with or without segregation). 

 
Governing equations: Be x1 (or y1) the number of grains of type X  (or Y) at time t in 
box 1 and x2 (or y2) the number of grains of type X  (or Y) in box 2. Be f(x1,y1) the 
flux of beads X from one box (says 1) and g(x1,y1) the flux of beads Y from the same 
box. Conversely, the flux from the other box will be given by the same functions f and 
g, i.e. f(x2,y2) & g(x2,y2) respectively, because of the symmetry of the system (the two 
containers are identical) and because of the assumed hypotheses, i.e. the granular 
medium is a low density gas and the slit is small. Be 2m and 2n the total number of 
particles X and Y respectively. 

As the system is closed one gets: 

x1+ x2=2m (1) 

y1+ y2=2n (2),  

dx1/dt= - dx2/dt= -f(x1,y1) + f(x2,y2) (3),  

dy1/dt= - dy2/dt= -g(x1,y1) + g(x2,y2) (4),  

One can change of variables and use the set u, v defined as x1=xo+u, x2=xo-u, 
y1=yo+u, y2=yo-u. Eqs. (1,2) are automatically satisfied, if xo=m, yo=n;  Eqs. (3,4) 
become: 

du/dt =f(m-u, n-v) - f(m+u, n+v) (5.a) 

dv/dt = g(m-u, n-v) - g(m+u, n+v) (5.b) 

Eqs. (5) is a set of two coupled linear differential equations with two unknowns 
(u,v). They are controlled by a set of control parameters among which are at least the 
amplitude A and frequency fr of vibration the total numbers 2n and 2m of X, Y 
particles, the height h of the slit, the shape of the box motion (sinus, triangle,…)…. In 
the theory of dynamical system [6], it would be said that the dimension of the phase 
space is 2. So this set cannot lead to chaotic behaviour; nevertheless it may generate 
cyclic attractors. The question is: when is it possible to get cyclic behaviour?  
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Note on Chaos and strange attractor generation:  
If one assumes that chaos is found experimentally nevertheless, this would indicate 
that some of the above hypotheses are wrong. This point is discussed now:  

One notices first that a modification of the flow functions is not able to make the 
problem chaotic because it will not change the number of equations and the number of 
unknowns: indeed, Eqs. (1) and (2) remain still valid and the phase space dimension 
remain equal to 2 if the modification wears only on the flow rules used in Eq. (5): 
Writing f1(x1,y1⏐x2,y2), f2(x2,y2⏐x1,y1), g1(x1,y1⏐x2,y2) , g2(x2,y2⏐x1,y1) instead of 
f1(x1,y1), g1(x1,y1), f2(x1,y1), g2(x1,y1) does not change the number of unknowns.  

On the other hand, if one observes chaos in such a closed experiment, it would 
mean that the phase space is equal to 3 at least [6]. In turn, it means that time becomes 
an important parameter, so that the excitation by vibration can not be considered as 
steady any more, but shall depend on time. This leads to flows depending on time. It 
may occur for instance when the time of flight of some particle at some time becomes 
small compared to the frequency of excitation. 

Steady excitation: 
We turn back now to the investigated case, for which excitation is considered as 
steady and flows depend on the content of the box from where the balls are leaving 
only. A question arises: Can one expect that a steady solution exists in some range of 
working parameters. This steady solution means a point attractor, i.e. (u1,v1). 

First result: According to Eq. (5), u=v=0 is always a steady solution since it leads to 
du/dt=dv/dt=0. However it remains to study the stability of this solution. In fact, this 
solution corresponds to equi-repartition. So, a priori, this solution shall be found at 
large excitation and small number of balls. This is at least what is observed in the case 
of "true Maxwell's demon effect in granular gas" [1-4]. 
 

Then we shall start from this solution to investigate further, and find more 
complex situations. So, we start from (u=0,v=0) and study the evolution of this steady 
solution when changing the control parameters, and we look for solutions in a region 
where u and v remain small compared to m and n. Also we consider cases when 
functions f and g are smooth enough so that first derivative of f and g will be sufficient 
to take account of the dynamics. Of course, in the case when a bifurcation occurs, this 
approximation (of smallness of u and v) is not achieved anymore when the undergone 
bifurcation is of sub-critical nature, or when the system is driven far away from the 
bifurcation threshold. This will not be studied because it requires knowing the general 
trend of the functions f & g everywhere in the (u,v) plane, which is not known at the 
moment. However, in most cases of Maxwell’s demon experiment in granular gas 
(with a single kind of particles) a critical bifurcation is observed. So, we will guess 
that same situation may occur here, for which (u,v) remains small near the threshold. 
Nevertheless, we will look for situations more complex here, because the attractor 
which we try to detect may be periodic. In other words, we want to know if it is 
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possible to see the content of the 2 boxes evolving periodically, with some balls 
filling/emptying the boxes alternately and periodically.   

So, the first step in analysing this problem is to perform a first-order expansion of 
Eq. (5) or a “linearization”. One has to introduce two derivatives for each flows f and 
g. We use the following notations fo’=fx =∂f(x,y)/∂x (g’= gx=∂g/∂x) which corresponds 
to X grains, and fo” =f y =∂f/∂y (resp. g”=gy=∂g/∂y) which corresponds to Y grains. In 
other words, this corresponds to: fo’=fx(m, n); fo”=fy(m, n); g’=gx(m, n); g”=gx(m, n) . 
So, f(m-u,n-v)= f(m,n) –ufo’ –vfo”, and so on.  
Eq. (5) writes: 

du/dt = − 2 ufo’ – 2vfo”  (6.a) 

dv/dt = − 2 ug’ – 2vg” (6.b) 
So Eqs. (6) govern the evolution of populations at first order expansion: 

For the steady state u=0 = v=0 be a stable steady state, one needs that the system 
of equations gets two eigen values with negative real part each. This ensures the 
convergence of the dynamics of any perturbation to u=v=0. The eigen values are 
solution of the characteristic equation :  

(λ+2fo
’)( λ+2g”) − 4 fo

”g’ =0=  λ ²+ 2λ(fo
’+g”) + 4[fo

’g” –fo
”g’]      

So defining  

Δ=(fo
’+g”)² + 4fo

”g’- 4fo
’xg”=(fo

’ -g”)² + 4fo
”g’  (7) 

One gets the two eigen values λ±:       

λ±= -[fo
’+g” ±(Δ)

1/2  ] (8) 
We are concerned in determining whether the experiment can produce cyclic 

behaviour or not. Indeed getting oscillation needs complex eigen values λ±, which 
requires in turn that Δ is negative, since fo

’ and g" are real. Assuming then a negative 
Δ, the system, when perturbed, will converge in spiral towards u=v=0 if fo

’+g” >0 , 
while it will diverge from it when fo

’+g” <0.  So the conditions of a Hopf bifurcation 
[6] occurs when (fo

’+g”) changes of sign, while Δ is negative typically. We recall in 
appendix the generic equation of the Hopf bifurcation and its subcritical/critical nature 
as a function of its parameters. We develop there also Eq. (5) at higher order to write 
the parallel with Hopf bifurcation in more details. However, it is difficult to determine 
all these terms theoretically so that discussion about the true critical/subcritical nature 
of the Hopf bifurcation cannot be done further. So we discuss further the physics of 
the phenomena with Eqs. (6-8) in the next paragraph, and we focus on Δ. 
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Parameters of the dynamics   

1- large excitation range  
or the limit of non interacting particles: 

In the limit of small m and n, particles do not interact. This shall ensure a priori equi-
repartition, since flows from the slit shall increase linearly with the ball number in the 
box in this case. This reads f(x)=kx and g(y)=ky. This ensures the stability of the 
solution u=v=0 in the case of two coupled boxes, since one gets fo' =g">0, f"=g'=0. But 
we are looking now to this point in more detail.  

Recall: if we consider the result from Maxwell’s demon [1-4] with a single kind 
of ball, equi-repartition occurs when there is little number of particles in each box 
and/or when excitation is large enough and that ball number N is small enough. In this 
case, it is known now [2-3] that the flow J at a given set (A,fr) of vibrational parameter 
is found to increase linearly with the grain number N; then it saturates, reaches a 
maximum at Nm and decreases with increasing N further. This is exemplified in Fig. 1.  

 

Figure 1:  The flow of beads from a box with a 
slit, as a function on the number N of grains in 
the box in the case of a single kind of grains, at 
different excitation acceleration (from [2]).  

Still in the case of a single kind of balls, equi-repartition is ensured till the maximum 
[2]. In the first linear regime the flow is proportional to N, so everything occurs as if 
the dynamics of each ball was independent from the others [7]. 

We consider now the case of a mixture of 2 kinds of balls; we first note that the 
dynamics of N identical balls with same mass is independent of the particle mass [8] 
(in term of speed and not in term of momenta or energy) . This is due to the equality 
between inertial mass and weighting mass. So, if we consider now two sets (X,Y) of 
balls which differ only from their mass, i.e.  MX≠MY, MX>MY, these two sets shall 
exhibit similar dynamics. So both sets shall exhibit similar ball speed distribution. So, 
in this limit regime of small ball numbers, one would expect that   

f   ”=g’=0,  (9.a) 

f  ’=g”=ko>0 , (9.b) 
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Eq. (9.a) indicates that each particle do not interact with the others and Eq. (9.b) that 
the flow is proportional to the number of particles in the box; so the number of  
particles X flowing from the box is just proportional to x, and independent of y, and 
conversely for Y. This is just what Eq. (9) tells. 

Eq. (6) is simple to solve in this case upon these values for fo’, fo”, g’, g” . One 
finds the steady solution: 

u=v=0 (7) 

and this solution is found to be stable. So, this analysis forecasts an equi-repartition as 
we were expecting. 

2- Intermediate regime:  Intermediate excitation range 
Or intermediate range of ball numbers  2m and 2n: 

When m and n are increased, interactions between balls appear. This generates 
dissipation. The first effect of this dissipation is to reduce the values of the derivative 
(as in Fig. 1):  

f  ’ >0, but fo’<ko , and fo’decreases when m increases (8.a) 

g” >0, but g”<ko , and g” decreases when m increases (8.b) 

We know also from Maxwell’s demon experiment that further increase of the 
numbers n and m may generate negative fo’ and g” [2] , see Fig.1.  

On the other hand, different trends happen for fo” and g’. Indeed, both kinds of 
beads do not wear the same kinetic energy when they have the same speed, because 
they have different masses. So following an argument developed in [8], their collisions 
allow some transfer which tends to equilibrate their momenta and their kinetic energy, 
instead of imposing similar speed distribution. Hence what occurs in a XY collision in 
average is that the ball which has the less mass, i.e. Y, will acquire some larger kinetic 
energy and the one which is the heavier, i.e. X, will loose some energy to the benefit 
of the other one. Hence, one expects : 

fo” <0, and fo” decreases from 0 when m or n increases (8.c) 

g’ >0 , and g’ increases from 0 when n or m increases (8.d) 

Also, g’ (and fo”) start increasing (decreasing) from 0 when increasing m and n from 0. 
Combining these trends with the population dynamics (Eqs. 6), leads to a 

negative Δ=−Ω², hence to complex eigen values: indeed, Δ=(fo
’+g”)² + 4fo

”g’- 
4fo

’xg”=(fo
’ -g”)² + 4fo

”g’  from Eq. (7); so assuming fo'=g", one gets that Δ<0. In other 
words, convergence to equi-distribution shall occur in spiral as soon as the flow starts 
behaving not linearly with the ball number. 
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So starting with small m and n numbers of particles, (and high excitation) fo’=fo’o 

≈ g’=g’o and fo”=fo”o≈ 0, g’ ≈ 0  ; in this case the state with equi-partition is stable since 
the real parts of its eigen values are approximately –fo’o and –g”o, so that they are 
negative. In fact, fo’o and –g”o, are expected to depend on the excitation speed aω.  

Increasing the number of balls fo’ and g” start deceasing, but remains equal about 
(fo' = g"); however fo" becomes negative and g' positive so that Δ becomes negative, 
implying complex eigen values λ±= −(fo’ +g”)/2±iΩ) = α± ±iΩ with Ω²= −Δ. So 
convergence towards u=v=0 is in spiral.  

 

 

 

Figure 2 : Typical flow curves obtained in a box containing mixtures of heavy (X) and light (Y) 
particles. The number N of X (resp. Y) particle is varied at fixed Y (resp. X) particles. The flow red 
(resp. green) curves correspond to the flow from the N particles X (resp. Y). The blue curve 
correspond to the ratio N/(N+k) of the flow obtained with a box containing N+k identical particles 
(either X or Y).  

3- General trend of flow rules: 

Let us now consider the case of a box containing the two species X,Y, one with the 
amount N and the other with a fix amount k. From what has been told previously, it is 
obvious that the flow curve of the lighter shall be improved by the presence of the 
heavier, while the flow of the heavier shall decrease. It results from this that we expect 
the typical flow curves as those reported in Fig. 2.  

In this Figure, the blue (continuous) curve represents the flow JN,k from a subset 
of N particles in a box containing N+k identical particles (either the lighter or the 
heavier); it is given by JN,k =J(N+k) N/(N+k) , where J(N+k) is the flow from a box 
containing N+k identical particles. The green (dash) curve is the one for N light 
particles in presence of k heavier particles, while the red (dots) curves correspond to 
the flow of N heavy particles with k lighter. This Figure was built according to the 
preceding rules: Mixing N light particles with k heavier shall improve the mean speed 
of the heavier and decrease the mean speed of the lighter. From this also, one shall 
conclude that the distance from the blue-red (resp. blue-green) curves shall depend on 
k : The larger the k the larger the difference (still in the limit of small k). Also, one 
shall conclude from this figure that the positions Nmax,X & Nmax,Y of the curve 
maximum (in N) depend on the ball mass MX (or MY), on their difference (MX −MY) 
and on k. At last, fo’ and g” correspond to the derivative of the red and green curves 
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with respect to x and y respectively; similarly fo” and g’ can be computed from the 
change of these curves as a function of k.  

According to these statements, the Figure indicates that fo’ can be negative before 
g”. Estimates of fo” and g’ are obtained under linear approximation from Figure 2 by 
subtracting the values of blue-red & green-blue flows at a given N, followed by 
division by k. From this, one expects fo” g’ <0. We first look at the instability of the 
steady state (u=v=0), then look at larger distance from this bifurcation. This allows 
sketching the behaviour evolution as a function of the excitation parameter aω. 

4- Sketch of evolution of behaviour: 

A- Small-Amplitude Oscillating regime and beyond: Hopf bifurcation:  
Dynamics of population is controlled by Eq. (6) and the solution of eigen values and 
eigen states. When excitation is large, the steady state is (u=v=0) and convergence is 
exponential with a constant time 1/(fo’+g”). A convergence in spiral towards this point 
shall be observed at an oscillation rate Ωo , such as Ωo²=-Δ, which starts with a zero 
frequency, since fo”g’=0 when v=aω is large, then increases with the increase of -fo”g’. 
But above some threshold Vo=aoωo, which corresponds to fo’+g”=0, the steady state 
(u=v=0) is no more stable and a bifurcation occurs. This forces the system to oscillate 
with finite amplitude ε at the frequency Ω²=-Δ given by Eq. (7).   

A question arises: what is the variation of the amplitude of oscillation with the 
distance to the bifurcation: in classic Hopf bifurcation symmetry considerations 
impose that the second order term in the perturbation is 0. Here too, as demonstrated 
by Eq. (A5) of the appendix, in which the coefficient of the second order term is 0 due 
to the symmetry of the flows. Since some of the coefficients of third order term are 
likely not 0, then assuming it to be positive, hence one expects an amplitude ε of 
oscillation which scales as ε ∝ (Vo-V)½.  So: 

ε ∝ (Vo-V)½  = (aoωo-aω)½   (9.a) 

Ω = (-Δ)½   (9.b) 

So this bifurcation leads to generate a periodic oscillation of population, which 
starts above the threshold aoωo with a finite frequency Ωo (Ωo ≠0) and which varies 
slowly; meanwhile the amplitude ε of population oscillation starts at 0 at aoωo. and 
increases as ε ∝ (aoωo - aω)½, when decreasing the parameter of vibration. 

• Note: nothing imposes the third order terms to be positive, or the fifth order terms… 
So the bifurcation can also be of the sub-critical type. Also these terms can depend on 
the parameters a and ω independently, on other parameter 2m,…, so that a tri-critical 
point can appear as in [4bis], or one can meet a hyper-critical bifurcation case [4]. 
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B- large amplitude oscillation and Beyond oscillations: 
Far after this bifurcation and continuing decreasing the vibration energy, the 
discriminant Δ evolves. As the functions f and g are quite non linear, Δ may become 
positive which will lead to a stop of the oscillation of population. However, if this 
happens, the solution (x1= x2=m , y1=y2=n) will be likely unstable because of the sum 
fo'+g" which will be negative, so that one expects in turn a bifurcation toward a 
Maxwell's Demon steady state (MD) at smaller excitation. This MD state can be 
segregated, i.e. the composition of the two boxes may be different and their filling 
different too.  

However the existence of a stable segregated steady state is not linked to the fact 
Δ can become positive; it results from the negativity of fo' & g" at x>m & y>n 
respectively for small enough excitation, so that cyclic behaviour cannot be stabilised 
perhaps for a while by the coupling fo" and g'. 

 
 

Figure 3: Possible scenario of evolution: here are represented different possible trajectories of the 
system in the (x,y) plane at different amplitudes of vibration. At large excitation, the attractor is a 
point: the point O (x1=x2 =m, y1=y2 =n). Below some threshold, a Hopf bifurcation occurs, and the 
attractor is a closed loop indicating a cyclic (red circle) whose size expands and shape deforms when 
decreasing the amplitude of vibration (orange). At some other threshold (dashed brown), this 
trajectory meets a saddle point and the system escapes and falls in one of the two states of Maxwell’s 
demon (red points) (MD points). The MD points evolve towards the bottom-left and top-right corners 
when lowering excitation 
Question: is this script of evolution reversible starting from the Maxwell demon state, when 
increasing the Amplitude. 
The two red points correspond to Maxwell’s demon attractors (MD); their trajectory is indicated in 
dashed grey when decreasing the amplitude of vibration. 

Anyhow, the steady state which appears at smaller vibration shall exhibit large 
difference of populations so that the analysis in the basis of equi-distribution is not 
correct. The best way to study this new trend is to reconstruct the different possible 
attractors at different stages of excitation using the phase space of the system. This is 
done in Fig. 3. Indeed the variations of functions f and g are expected to be so large in 
this phase space so that a dynamics study using classic expansion method in the 
vicinity of (x1= x2=m , y1=y2=n) is meaning less anymore. A possible expansion in the 
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vicinity of a MD steady state is still possible but difficult because no one knows the 
values of fo'(x1,y1), fo'(x2=m-x1,y2=n-y1), fo"(x1,y1), fo"(x2,y2), g'(x1,y1), g'(x2,y2), 
g"(x1,y1), g"(x2,y2), at this working point and their possible evolution when increasing 
the excitation parameter aω.  

So, when the population of the system stops evolving periodically, it freezes in 
some configuration which exhibits a non equi-partition in both compartments. This 
means x1≠x2 and y1≠y2. However, due to symmetry considerations it is obvious that 
the symmetric solution which interchanges box indices 1 and 2 is also a steady 
solution. We have represented these two solutions by the two red points in Fig.3 in the 
top right and bottom left quarters. One expects that these attractors evolve towards the 
left bottom corner and top right corner when excitation decreases, since these locations 
correspond to (x1=y1=0), or (x2=y2=0). We need a scenario to understand what is 
occurring before this stage. 

We have also represented the cycles in Fig. 3, obtained after the Hopf bifurcation 
at Vo=aoωo; their trajectories shall turn around the point O of coordinates (x1=x2=m, 
y1=y2=n), since O corresponds to equi-repartition and since oscillations are generated 
from a bifurcation from this attractor point. Further decrease of the excitation 
increases the size of the trajectory and deforms it. In the vicinity of the Hopf 
bifurcation (at point O), the x direction is unstable and the y is stable (see Fig. 3), and 
(x,y) coupling makes the system rotating. Decreasing the excitation sufficiently makes 
also the y direction unstable because it translates the maxima of Fig. 3 towards left. So 
at sufficiently slow excitation one expects that both Maxwell’s demon effect on x and 
y species win and that trajectory ends at the red attractor points of Fig. 3. 

To do so there may be two possible explanations: in the first one the trajectory 
may pass near a saddle point whose altitude decreases when decreasing the excitation; 
so the system may go through the neck towards the MD attractor at some low 
excitation threshold V1=A1ω1<< Vo=Aoωo. Such a neck, if it exists, is probably located 
in between O and the MD attractor. The second explanation considers that the cyclic 
trajectory has to pass an edge oriented approximately perpendicular to the first bisector 
which is merely the line joining the 2 MD attractors and passes through point O. The 
altitude of the edge increases when lowering the excitation, so that the system cannot 
pass over the edge at some excitation level V1=A1ω1; and the symmetry breaks. The 
careful study of the trajectory in this phase space may allow determining which 
process is involved. The pulsation Ω of oscillation is also expected to decrease toward 
0 when decreasing Aω towards V1, since a point with very low speed shall be reached 
when approaching the neck or at the edge.         

C- Are MD attractors steady states or oscillating states?  
Let us now consider the “Maxwell’s demon” solutions and study their stability, their 
possibility of oscillations…. So we consider a possible MD steady state (x1o, x2o, y1o, 
y2o), such as 2m= x1o+ x2o , 2n= y1o+ y2o, with x1o< x2o & y1o< y2o, and a state (x1, x2, 
y1, y2) which is slightly apart from this position, say (x1, x2, y1, y2)= (x1o+u, x2o-u, 
y1o+v, y2o-v). The equation of evolution (Eqs. (3,4)) writes: 
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du/dt= −f(x1o+u, y1o+v) + f(x2o-u, y2o-v) (10.a) 

dv/dt= −g(x1o+u, y1o+v) + g(x2o-u, y2o-v) (10.b) 

Also as (x1o, x2o, y1o, y2o) is a steady state, one gets: 

0= −f(x1o, y1o) + f(x2o, y2o) (10.c) 

0= −g(x1o, y1o) + g(x2o, y2o) (10.d) 

Developing Eqs. (10.a-b) at first order in the vicinity of u=v=0, noting  
fo'1=df/dx(x1o, y1o), fo"1=df/dy(x1o, y1o), fo'2=df/dx(x2o, y2o), fo"2=df/dy(x2o, y2o),  
g'1=dg/dx(x1o, y1o), g"1=dg/dy(x1o, y1o), g'2=dg/dx(x2o,y2o), g"2=dg/dy(x2o, y2o) 
one gets: 

du/dt =  −u[fo'1+fo'2] − v[fo"1+fo"2] (11.a) 

dv/dt =  −u[g '1+g '2] − v[g"1+g "2] (11.b) 

The stability of this solution is studied by determining the eigen values λ1± of these 
equations, which are solutions of:  

0=  [λ+fo'1+ fo'2] [λ+g"1+ g"2] −  [fo"1 + fo"2][ g'1+ g'2]  

or: 

0=  λ² + λ[fo'1+fo'2+g"1+g"2] +(fo'1+fo'2)(g"1+g"2) − (fo"1+ fo"2)(g'1+ g'2) 

Finding λ  requires computing the discriminant Δ1:  

Δ1 =  [fo'1+fo'2-g"1-g"2]² + 4(fo"1+ fo"2)(g'1+ g'2) (12) 

This leads to: 

λ1± =  − {fo'1+fo'2+g"1+g"2 ± [Δ1]
½
 }/2 (13) 

One expects that the steady state (x1<x2, y1<y2) corresponds to well developed MD, for 
which the population x1 and y1 are quite small, for which the flow is linear with x and 
y. This reads: fo'1=g"1=ko>0 and fo"1=g'1= 0 (see Eq. (9)). On the other hand, fo'2<, g"2<0 
. It results from this some difficulty to predict the sign of Δ1 and of fo'1+fo'2+g"1+g"2. In 
particular it is known from experiment on Maxwell's demon with a single kind of 
grain that the sum fo'1+fo'2 and g"1+g"2 can change of sign when increasing the 
excitation parameter Aω at constant A [4] while the product fo'1*fo'2 and g"1*g"2 remain 
negative. So it is difficult to argue further. Let us then state simply that the solutions 
defined by Eq. 13 are (i) stable and steady if the real part of −{fo'1+fo'2+g"1+g"2 ± [Δ1]

½
 

}/2 is negative and (ii) are oscillating if fo'1+fo'2+g"1+g"2 is negative and Δ1 be negative.
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Let us now consider such a case of oscillation with MD for which fo'1+fo'2+g"1+g"2 
and Δ1 are both negative and let us study if the system can stop oscillating when 
changing Aω. In fact there are two ways:  

(i) either the system undergoes a second Hopf bifurcation for which 
{fo'1+fo'2+g"1+g"2 }/2 passes from negative to positive at some stage; in this case the 
amplitude of oscillation shall tends progressively to 0 and the oscillation pulsation 
shall remain merely constant Ω1 = [-Δ1]

½
 . 

(ii) or the discriminent  Δ1  passes from negative to positive at some stage. In this 
case, oscillation stops when pulsation goes to 0.  

However an other case can merge if some of the 2 functions f(x,y) or g(x,y) can 
become 0 above some finite grain number (X or Y respectively) below some Aω. This 
condition may become valid only during some part of the cycle. If so, one of the box 
empties completely of X or Y (depending on which function f or g gets 0), and the 
problem loose one degree of freedom. In such a case, one expects then to observe 
classic Maxwell demon for the second compound. The freezing and emptying of the 
heaviest particles seems to be the more likely owing to the rules for kinetic energy 
transfer between the balls. It means in this case that the system travels along the cyclic 
trajectory at a not constant speed, so that it can occur in some part of the cycle that 
speed goes very slow (→0). This will be this slow part of the trajectory which will 
control mainly the period of oscillation just above the quenching. 

5- Generalisation to other systems and Conclusion: 

We have considered mixtures of two sets of balls with same mechanical characteristics 
except from their mass. In fact as stated at the beginning of the paper the problem 
remain constraint mainly by its maximum complexity, which is determined by the 
dimension of its phase space. This one remains 2-dimensional as far as the excitation 
can be considered as continuous. Hence the complexity of the behaviour of the system 
cannot be larger than periodic orbit (no chaotic behaviour).  

Also the transfer of kinetic energy from one kind of ball to the other one is 
mainly imposed by the difference of mass between the two species; this determines the 
sign of the coupling fo"g' <0 in Eq. (6), which is negative; this leads in turn to a 
negative discriminant and to complex eigen values. Hence this forces oscillation and 
the generation of periodic obit. Indeed such oscillations have been found 
experimentally [9]. 

 In turn, the coupling mechanism which allows oscillation shall apply also on 
other sets of 2 kinds of balls, as far as their masses are different. So, one shall expect 
that the trends described here are quite general and can be applied to most other cases. 
It means that one may expect that large amplitude vibration shall lead to steady equi-
repartition; then the decrease of excitation shall generate a Hopf bifurcation with an 
oscillation of populations. This one stops in turn at smaller amplitude and the system 
undergoes a bifurcation towards a Maxwell's demon state (MD) with segregation. 
Different scenarii have been proposed for reaching this last stage. 
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Also possible evolution toward a cyclic behaviour with trajectory forming a loop 
around the MD state has been considered; since the transfer functions f and g are not 
known, this evolution is possible (in principle). In this case, further decrease of 
vibration amplitude will impose a second Hopf bifurcation to freeze the system into a 
steady state.  

The nature of the Hopf bifurcation at high vibration amplitude has been rapidly 
discussed. Due to the uncertainty of the variations of the flow rules at large number of 
grains, one cannot predict exactly if the bifurcation will be critical or sub-critical; 
Considering the "true" Maxwell's demon case, at work with a single kind of balls, and 
its complexity, we may guess also such a complexity here, and assume (?) that the 
bifurcation can evolve and pass from critical to sub-critical via a tri-critical point. 

It is possible that under some circumstances, oscillations and Hopf bifurcation do 
not occur so that the system undergoes directly some kind of steady "Maxwell's demon 
effect" as in classic granular gas, (but with segregation here). However it seems that it 
should be rare, since the coupling fo'g"<0 seems to be logic as soon as particles have 
different masses: at similar speed the lighter particles have less energy and momenta 
than the heavier so that collisions between heavy-light particles will transfer kinetic 
energy from one species (the heavier ones) to the other/lighter ones.  

At last, when dealing with particles of different sizes, it is likely important to 
think in terms of the number of layers the species covers on the bottom box at rest, 
instead of particle number, because this is what controls the typical mean free path and 
the collision losses.  

 
As a matter of fact, studying the evolution of the content of two coupled boxes is 

a first step for understanding spatio-temporal complexity in a continuous space, since 
the system integrates both the coupling rules between adjacent locations and rules for 
time evolution of each species. So this study is a first step in understanding the space-
time dependence of the patterning in segregation processes with two grain species. It is 
found that oscillation shall spontaneously occur with two boxes and two compounds 
only. So it may explain why segregation oscillation pattern can be seen in 3d 
segregation problem. 

Furthermore, we can extrapolate this approach, to obtain some rule similar to the 
phase rule in thermodynamics that relates the number k of freedom degrees to the 
number n of compounds and the number ϕ of different phases, which writes k=n+2-ϕ. 
Here, it becomes d=q(K-1) which relates the dimension of phase space d, i.e. the real 
number of unknown, to the number of grain species q and to the number of boxes K, 
since there are qK populations and a set of q coupled equations. So, as soon as d≥2 the 
system can oscillate under some condition, while it can exhibit chaos as soon as d≥3. 

Applying this result to K boxes (K>2) and a single class of grains [8,9], this 
forecasts that 3 boxes may exhibit non steady state, but oscillating state while chaotic 
behaviour can be obtained when K>4 if transfer rules let do it. This does not seem to 
have been found nor envisaged [9-10] . In larger number of boxes one may expect 
generating system of wave propagations, solitons…. However, this requires specific 
transfer rules with large non linearity, which may be difficult to achieve with a single 
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class of grains. Perhaps to include different slits at different height as in [9] may be 
sufficient?  Anyway such behaviours shall likely be observed in the case of a larger 
number of boxes and compounds. 

Appendix: Hopf’s Bifurcation:  

The generic form of the dynamics of a system which undergoes a Hopf bifurcation writes:             

dz/dt= (-σ-iω) z  - z [∑k hk ⏐z⏐
2k

]          With hk = h’k+ih”k (A1) 

where z=zr+izi is a complex variable of two variables zr and zi .We write z=Z exp(iϕ), so that Z=⏐z⏐, we get 

dZ/dt+iZdϕ/dt=(-σ-iω)Z-(hk'+ihk")Z2k+1    (A2) 

so that 

dZ/dt=(-σ-hk' Z²k)Z  (A3.a) 

Z dϕ/dt= Z(-ω-hk" Z²k)  (A3.b) 

z=0 is a steady state. Since σ and ω are real, iω is imaginary and the eigen values λ±= -σ±iω in the 
vicinity of z=0 are complex. It results from this that convergence towards z=0 is ensured as long as σ is 
positive, and that this convergence is in spiral. So, one can limit Eq. (A1) to its expansion at first order as long 
as σ>0 because the system remains in the vicinity of z=0.  

On the other hand, this solution z=0 is no more stable if σ becomes negative. In this case, one shall take 
into account the higher order terms; be 2k+1 the first one, for which we assume a positive real part hk'>0. Eq. 
(A3.a) has now the solutions when σ is negative: the steady solution Z=0 , which is now unstable when σ is 
negative, and the solutions Z=(-σ/hk' )

1/(2k)
 when σ<0 and hk'>0. Substituting this value in Eq. (A3.b), one 

obtains that the phase of z rotates linearly with time, since dϕ/dt= -ω+σ/(hk' hk"), which indicates a periodic 
solution. In particular when k=1, one gets a classic supercritical bifurcation if h1'>0 (and is stable); its 
amplitude grows rapidly with σ in the vicinity of σ=0; this generates important fluctuations. When k>1, the 
sensitivity to σ is even larger (since Z=(-σ/hk' )

1/(2k)
) so that fluctuations are more important even.  

When the first hk' is negative, one has to expand further Eq. (A2) to include higher order terms; the 
bifurcation becomes sub-critical in this case.  

The passage from this generic form to the case studied in the present article is straight forward: Eq. 
(A1) shall describes the dynamics of population which is given by Eq. .5. So, z=u+iv and the pairs (σ,ω) & 
(h’,h”) are related to the expansion of functions f and g around m and n in Eq. (5a & b). The identification 
imposes at third order: 

f(m-u, n-v) - f(m+u, n+v)= −σ u+ωv – (u²+v²)( h’u-h”v)     (A4.a) 

g(m-u, n-v) - g(m+u, n+v)= − σ v − ωu – (u²+v²)( h’v+h”u)     (A4.b) 

On the other hand, labelling ∂f/∂x=fx …. and expanding f et g in the vicinity of m & n lead to : 

f(m+u,n+v)= f  + (ufx+vfy)  +  (u²fx²/2+uvfuv+v²fv²)  +  (u3fxxx+3u²vfx²y+3uv²fxyy+v3fyyy)/6  +  
(u4fxxxx+4u3vfxxxy+6u²v²fx²y²+4uv3fxyyy+v4fyyyy)/24  +  
(u5fxxxxx+5u4vfxxxxy+15u3v²fxxxyy+15u²v3fxxyyy+5uv4fxyyyy+v5fyyyyy)/120  +   ….   +  

or 

f(m-u,n-v)-f(m+u,n+v) =  -2(ufx+vfy)  -  (u3fxxx+3u²vfx²y+3uv²fxyy+v3fyyy)/3  - 
(u5fxxxxx+5u4vfxxxxy+15u3v²fxxxyy+15u²v3fxxyyy+5uv4fxyyyy+v5fyyyyy)/120  +     ….    

 And similarly for g. So, this leads to the following dynamics equation: 

du/dt = -2(ufx+vfy)  -  (u3fxxx+3u²vfx²y+3uv²fxyy+v3fyyy)/3  - (u5fxxxxx+5u4vfxxxxy+ 
15u3v²fxxxyy+ 15u²v3fxxyyy+5uv4fxyyyy+v5fyyyyy)/120  +     ….   + (A5.a) 



P.Evesque / Cyclic Maxwell demon in granular gas with 2 sets of balls - 37 - 
 

poudres & grains 16 (2), 23-37 (Mars 2007) 

dv/dt = -2(ugx+vgy)  -  (u3gxxx+3u²vgx²y+3uv²gxyy+v3gyyy)/3  - (u5gxxxxx+5u4vgxxxxy+ 
15u3v²gxxxyy +15u²v3gxxyyy+5uv4gxyyyy+v5gyyyyy)/120  +     ….   + (A5.b) 

Identification imposes writing Eqs (A5) as the generic form (Eq. A4). Starting the identification with first 
order, one gets (see Eqs 7 and 8):  

 z=u+iv, σ = f’+g”=fx+gy and -ω²=Δ   (A6) 

Then limiting the analysis at third order, one gets: 

du/dt = -2(ufx+vfy)  -  (u3fxxx+3u²vfx²y+3uv²fxyy+v3fyyy)/3  -   ….   + (A7.a) 

dv/dt = -2(ugx+vgy)  -  (u3gxxx+3u²vgx²y+3uv²gxyy+v3gyyy)/3  -    ….   + (A7.b) 

And third degrees terms of Eq. (A7) have to be identified to those ones of Eq. (A4. 
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