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Abstract: 
The study of the distribution ρ(f) of contact forces F in a homogeneous isotropic disordered granular sample 
subject to uniform triaxial stress field is undertaken using a model where forces propagate and collide. 
Collisions occur at grain and obey given rules which allow satisfying local static equilibrium. Analogy with 
Boltzmann’s equation of density evolution is drawn and used to derive the parameters that control the 
distribution  ρs(f) of contact forces F in the stationary state in case of a packing of mono-disperse spheres. 
Using symmetry argument and mean field approximation, it is found that stationarity is achieved when the 
density ρs(f) of force can be written as the product of exponentials of quantities whose sums are preserved 
during collisions. This introduces 3 parameters in 2d and 6 in 3d which are the mean force components {Fxo, 
Fyo , Fzo }, and the mean torques of the force on a grain {Mxo, Myo , Mzo} . Astonishingly, it seems that the 
theory cannot include distribution of contact orientation implicitly. Extension of the model is possible with 
some care to case of anisotropic packing.  

Pacs # : 5.40 ; 45.70 ; 62.20 ; 83.70.Fn 
 

Consider a sample of granular matter made of rigid spheres of identical size; it is 
supposed to be homogeneous and disordered, and to be submitted to an uniform 
triaxial stress σ. The questions are: what is the distribution of the contact forces? How 
does the correlation between forces vary with distance? What is the structure of the 
force network?  

This has been the topic of a series of experimental and/or theoretical papers 
recently [1-7], leading to intricate modelling; for instance, a parallel with the physics 
of glasses has been even drawn [7]. Since Dantu [8] and De Josselin de Jong [9] one 
knows that the force field looks quite disordered. Indeed the main problem 
encountered is the correlation between the forces; to solve it, a subjacent network is 
postulated and a law of redistribution of forces is assumed; the problem becomes so 
intricate that solutions are found only when using drastic simplification, which forgets 
to ensure local equilibrium for instance [1-3]. These solutions ends with an 
exponential distribution ρ(f)=exp{-f/fo}. A similar exponential trend is also observed 
experimentally.  

On the other hand, a simple solution to the same problem has been proposed [10] 
in the case of an isotropic stress; it was based on a simple statistical argument, “à la 
Boltzmann”, which supposes that the force distribution obeys a principle of maximum 
disorder with two constraints in order to take into account (i) that the applied stress σ 
is fixed and (ii) that the total number of contacts is known and constant. This leads to 
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predict that the contact forces obey an exponential distribution, i.e. ρ(f)=exp{-f/fo} 
where ρ(f) is the probability of finding a contact force whose modulus is f. Few former 
works have proposed some similar approach [11-13]. Indeed, as mentioned in the 
previous paragraph, experimental data are compatible with this law; hence they are 
compatible with this simplified modelling, which does not care of local equilibrium. 
Does it mean that the exponential distribution satisfy spontaneously local equilibrium? 

This is just what we want to demonstrate; this is true even in a more complicated 
case, i.e. under a triaxial uniform stress field, as far as the medium is homogeneous.   

The present article takes a more general point of view, which starts from the 
notion of force propagation along a network, transforming a space coordinate into 
“time coordinate”. It imposes rules which ensure local static equilibrium.  

Then, the evolution process is transformed into a problem of collisions, which 
allows the force network to evolve; hence the force network evolves due to 
interactions between forces, and such interactions are viewed as collisions. To warrant 
the existence of the local mechanical equilibrium, the model shall impose specific 
“collisions” rules, with preserved quantities. An equation of evolution of the 
distribution of forces is then found, which looks like a Boltzmann’s equation of 
evolution [14-16].  

Then the case of a homogeneous material subject to a triaxial uniform stress is 
investigated. It is shown that its distribution shall be stationary within the present 
modelling, due to the hypotheses of homogeneity and uniformity.  

Next, the exponential distribution of force is shown to be a stationary solution of 
the problem that satisfies conditions of local equilibrium. This leads the paper to 
propose a general form for the stress distribution under triaxial confinement, which 
depends on 3 parameters in 2d, i.e. {Fxo,Fyo, Mzo}, and 6 parameters in 3d, i.e. {Fxo,Fyo, 
Fzo, Mxo, Myo, Mzo}, which are the mean force- and mean momentum- components. 

An important corollary (or consequence) of this study is the following: if one 
finds an experimental distribution ρexp(f) that is different from the ρstat(f), then it 
probably means that this experimental distribution ρexp(f) is not stationary and the 
stress field not uniform. 

The paper is built following these four steps, which are developed in successive 
subsections. 

1. Force-propagation and force-networking: 

Let us consider a homogeneous granular material made of grains of typical size d and 
subject to a uniform stress field. As shown in Fig. 1, the problem of the distribution of 
contact forces in a granular material can be formulated in terms of stress [4, 8-13 and 
refs there in], or in terms of a force network that propagates with some random 
character [1,6]; both are possible.  

Indeed any grain can be viewed as stressed through a series of contact forces; this 
is the first case (or model A); it corresponds to the classic view where all the forces 
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acting on a grain are viewed as applied from the other grains; and the sum of all the 
forces and momentums applied to a considered grain is equal to zero, because of 
mechanical equilibrium. The modelling holds either at the grain level or at any larger 
scale, for which it becomes the properties of normal uniform stress field. 

It is straightforward to transform this model A into a model of propagation of 
forces: The basic idea in this case is to decompose the system into parallel slices and 
to order them in a direction perpendicular to the cuts. Now, each cut (C) cuts a given 
set {gi} of grains. Each of these grains {gi} can be considered as a force transmitters 
(model B), with incoming forces (which are those ones from one side of the cut) and 
with outgoing ones (which are those ones from the other side).  

 

Model  A 
Cut z1                   Cut z2 

Model  B 

 
Figure 1: Homogeneous packing of grains under homogeneous stress. Owing to the action of the 

surrounding grains, each grain is submitted to a series of forces. Model A allows to define the 
stress; Model B is issued from model A by inverting a series of forces (those forces which are 
below a given cut). This second model allows to make clear the mechanism of stress propagation. 
Equilibrium of each grain is ensured by Σi Fi=0 in model A on a grain, and by  Σi Fi, incoming= Σj Fj, 

outgoing in model B; this for each grain. The precise position z of the cut does not play an important 
role; it redistributes the exact distribution of incoming- and outgoing- forces. 

 
This is obtained as follow: the forces applied to a cut grain are separated into two 

categories, those which are from one side of the cut, i.e. (top), the others which are in 
the other side of the cut, i.e. (bottom). Then the second set of forces is inverted. Owing 
to this procedure, the first set can be viewed as the set of forces applied by the top part 
of the medium on the considered cut, and the second set as the set of forces applied by 
the cut on the bottom part of the medium. The first set will be called the set of 
incoming forces {fin, i}C, the second set the set of outgoing forces {fout, i}C.   

• Rules for transmission inside the grains: In model B, equilibrium of a grain is 
obtained if the sum of its incoming forces is equal to the sum of its outgoing forces 
and if the sum of the momentums Min,i generated by these incoming forces is equal to 
the sum of the momentums Mout,i generated by the outgoing forces, since both sets of 
forces generate momentums on the grain. This implies also to incorporate in the local 
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description of incoming and outgoing forces the set of momentums , i.e. {fin, i, Min,i }C 
and {fout, i, Mout,i }C . The notation will be reduced to {fin,i}C and {fout,i }C for sake of 
simplicity, but it includes momentums.   

• Sensitivity to the position of the cut : the “height” of the cut is somehow arbitrary; it 
influences only the number of forces in each category. It means that the network is 
quite sensitive to the precise position of each cut. 

Internal contacts: One sees that some adjacent grains which are pertaining to the 
same cut have also common contacts; this is visible in the bottom diagram of Fig.2, for 
which forces are in green; this generates two opposite forces, both pertaining to the 
incoming set or to the outgoing set of forces. The momentums which are associated to 
them have opposite signs, but their modulus can be different if the two grains have 
different shapes and/or sizes. The existence of such internal contacts introduces some 
correlations between the set of incoming forces, and/or between the set of outgoing 
forces. 

 

(a) 
 
(a+1) 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Left: Packing of grains under triaxial stress . Right: two cuts at different height.  
                  Bottom: Enlargement of cut (a) to show the propagation of the force network between 

strata (a) and (a+1). The blue forces are the forces incoming at stage (a); the pink forces are 
force outgoing from strata (a); they are also forces incoming to strata (a+1). There exist also 
a series of green forces which are paired; both part of each green pair are either incoming or 
both outgoing forces, but each part of the pair pertain to a different grain. Furthermore, the 
sum of the two parts in each pair is zero, due to the law of action-to-reaction. Hence, green 
pairs introduce correlations between collision rules in adjacent grains. 

 

• Rules for transmission to next grains:  the set of forces {fout,i }C can be viewed also 
as the set of forces applied to a new set of grains a little forward, since this set 
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corresponds to next grains in the forward direction. This ensures the force to be 
transmitted. Hence, one can write {fout,i }C ={fin,i }C’ , where  C’ is a new cut; this cut is 
no more flat; but the positions of the centres of the new grains it cut which are 
considered are located within a distance in between d/2 and 3d/2 from the initial cut C, 
since all these new grains shall touch a grain which is cut by C.  

The problem of momentum transmission from one grain to the next one is some 
more tricky since the new momentum depends not only on the transmitted force, but 
also on the position, the shape and the size of the new grain. For instance, when 
considering spheres of identical sizes d, the momentums are just reversed, i.e. {Mout,i 

}C ={-Min,i }C’ , due to the position of the two centres, but when the spheres have 
different diameters d & d’, the transmitted momentum is -d’/d time the initial one, i.e. 
Min,i, C’= (-d’/d)Mout,i,C . Also the relation gets more intricate when grains are non 
spherical. 

• Transmission from cut to cut:  If one considers two successive cuts Cn and Cn+1, 
they are separated by some distance ξ, filled with material; these two cuts are 
characterised by two different sets [{fin,i}Cn , {fout,i }Cn ] and [{fin,i}Cn+1 , {fout,i }Cn+1] and 
the medium transformed them into each other. So the medium in between can be 
viewed as a transformer which transforms either (i) the incoming set of forces and 
momentums in Cn into the new incoming set of forces and momentums in Cn+1 , i.e. 
{fin,i}Cn → {fin,i}Cn+1 , or (ii) the outgoing set of forces and momentums in Cn into the 
new outgoing set of forces and momentums in Cn+1 , i.e. {fout,i}Cn → {fout,i}Cn+1 , or (iii) 
the incoming set of forces and momentums in Cn into the new outgoing set of forces 
and momentums in Cn+1 , i.e. {fin,i}Cn → {fout,i}Cn+1 , or (iv) the outgoing set of forces 
and momentums in Cn into the incoming set of forces and momentums in Cn+1 , i.e. 
{fout,i}Cn → {fin,i}Cn+1 . One needs 3 of these 4 representations to define the complete 
details of the force transmission as soon as the distance ξ is non zero.   

Of course, when ξ<d correlations exist between the different sets because some 
forces remain in common between them; this is true for {fin,i}Cn & {fin,i}Cn+1 , and 
between {fout,i}Cn & {fout,i}Cn+1 ; some other forces of {fout,i}Cn are in common with 
{fin,i}Cn+1 ; contrarily, there is ever no force in common between {fin,i}Cn & {fout,i}Cn+1 . 
Indeed, as soon as ξ≠0, (ξ <d), some old grains “disappear” and some new grains 
“appear” when passing from the cut Cn to Cn+1; this generates a new set of forces. The 
collection of cut grains starts being completely different only when ξ>d. 

In this case, direct correlation disappears between the sets of forces as soon as 
ξ>d. However correlations persist on larger scale due to conservation of macroscopic 
quantities. This is studied in the next paragraph. 

• Large scale correlation : Indeed, correlation still persists at larger scale, due to 
conservation law. For instance, if one considers two cuts of size L² separated by ξ >d, 
with L>>ξ, one can decompose the medium in between the cuts in N cubes of size ξ3, 
with N=(L/ξ)². Each facet of these cubes can be considered as a cut, so that one can 
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proceed with facets perpendicular to the principal one as it has been proceeded with 
the normal one. So, including these new sets of incoming and outgoing forces and 
momentums, one can write macroscopic condition of equilibrium at scale ξ. This is the 
natural way to scale up the modelling.  

Also, the equilibrium condition which has to be written in the case of a complex 
volume which contain few cubes and include internal facets shall not take care of the 
internal facets, because their contribution cancels. This is obvious in the case of a 
volume made of two adjacent cubes; the contribution of the internal facet has not to be 
taken into account since the facet pertains to the two cubes, and since it cuts grains in 
equilibrium; so both contributions counter-balance each other exactly. Following the 
same procedure, equilibrium condition can be written on larger parallelepiped volume 
containing many (λ/ξ)² cubes ξ3; in the case λ>> ξ the effect of the outer lateral facets 
become negligible and equilibrium requires approximately the conservation of the sum 
of the forces on each face of size λ², i.e. it means normal rule of the transmission of 
mean stress.  

A similar rule of conservation can be obtained for momentum transmission in the 
case of a packing of mono-disperse spheres, because momentum is correctly 
transmitted from sphere to sphere when spheres have the same size as stated above. 
However, it is no more true, when spheres of different sizes are mixed, or when grains 
have complex shapes; in this case transmission of momentums is more complex.  

This point of view allows analysing the system as the propagation of forces in the 
direction perpendicular to the strata. 
 

• Mapping the problem on a diffusion modelling: Let us define x1 as the direction 
perpendicular to the cuts as in Fig. 2. Let us consider an inward contact force f ; it is 
located at a point of the network of contacts in the very vicinity of cut x1. This force be 
viewed as propagating along x1 with some evolution. A simple way to take into 
account this evolution is to consider that the force f diffuses also along x2 and x3; the 
diffusion is imposed by the interaction with the other forces which are applied to the 
same grain; the true interaction has been described already in the previous paragraphs, 
here the diffusion process is just an approximation; it ensures the conservation of the 
macroscopic quantity. Hence, the direction x1 plays the role of the time and directions 
x2 and x3 the role of the space in this diffusion process; this point of view has been 
developed in [5]. 

If a collection of forces f located on a small area of the cut is now considered, 
with a density distribution ρ(f), it shall evolve also according to this diffusion; hence it 
shall obey: 

∂ρ(f)/∂x1= D [∂²ρ(f)/∂x2² + ∂²ρ(f)/∂x3²] (1) 

where D is a diffusion coefficient, which is some kind of random variable that 
describes the mechanical rules of force transfer.  
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Indeed, the density distribution ρ(f) corresponding to this small surface of the 
given cut, say (a), located at x1, is expected to look rather random and little correlated. 
In fact, correlations can be spontaneously generated (or destroyed) by the existence of 
“internal” contacts in the incoming (outgoing) set of forces; but these contacts are 
assumed to be few. Also pre-existing correlations can be transmitted partially; these 
correlations were pre-existing at earlier stage, say at x1-δx1 in (a-1), and are 
transmitted from direct or just-adjacent surfaces by the diffusion process. One expects 
this last contribution to be partially washed out because of the diffusion process.  

However, it is obvious that the diffusion equation does not describe the exact 
mechanical rules which are obeyed by the force transfer. Hence, Eq. (1) is an 
approximation. 

2. Collision  formalism:  

In this section we want to restate the problem with a different point of view . We keep 
in mind the view point of the evolution of the force network, which proceeds 
downward in Fig. 2, i.e. along the x1 axis . But we reanalyse it from the viewpoint of 
collision: Indeed, any problem of diffusion or scattering can be viewed as a collision 
problem with a collision operator that characterise the local rules of transfer. In the 
present case, one has to describe that the evolution of the set of inward forces at stage 
(a). This set evolves due to the interaction between the inward forces themselves. The 
interactions occur within grains; hence the set of inward forces can be separated into 
disjoined subsets, each subset corresponding to a peculiar grain; hence each subset is 
made of the set of forces pointing inward the considered grain. Conversely, the sum of 
these subsets is the whole set of inward forces that correspond to cut (a).  

Within this point of view, interactions between forces and momentums occur 
only within these subsets; they are localised on grain. These interactions produce the 
outward forces {fout,j,a} and the outward momentums {Mout,j,a}. Then the outward 
forces transform directly into inward forces at cut (a+1), or on next grain, and so on, 
with the rule fout,j,a=fin,j,a+1. But the momentums are inversed , i.e. Min,j,a+1=-Mout,j,a , 
when grains are spheres of equal size (the relationship between outward and inward 
momentums is simple only in the present case of equal spheres). This is the scheme of 
the evolution we want to study.  

We note also from Fig. 2, that some inward (or outward) forces are paired (in 
green in Fig. 2); this occurs because they pertain to adjacent grains in contact and 
because these two grains are both cut by the cut (a). These pairs of forces shall be 
opposite because of the action-and-reaction law; hence they introduce some 
correlation between adjacent collision rules. But as they are not so many, we may 
expect their correlation effect is negligible. At least we will assume so hereafter. 

So the propagation of the force network can be analysed in terms of a succession 
of collisions between inward forces that disappear and are replaced by the outward 
forces; in turn, these outward forces become the next incoming forces at the following 
grain, and so on. Within this scheme, collisions are localised on grains; they are 



P.Evesque / On force distribution & force network - 89 - 

 

poudres & grains 14 (4), 82-95 (2004) 

described by collision rules. As the product of the collision is rather random set of 
force, these rules are rather random; however as the grains remain in static equilibrium 
the collisions obey some preserving rules which are momenta equal 0.  In classic 
approach, this writes: 

Σall forces i ∈ same grain g fi,g=0 (2.a) 

Σ all forces i ∈ same grain g fi,g ∧ ri,g =0  (2.b) 

where bold characters are used for vectors, where ∧ means vectorial product and  
where ri,g is the vector connecting the centre of mass of grain g to the contact point 
where the force fi,g is applied.  

However in the case of the present approach this shall be modified to account of 
the fact that incoming forces produce outgoing forces; hence Eq. (2) shall be rewritten 
as: 

Σall incoming forces i ∈ same grain g fi,g= Σall outgoing forces j ∈ same grain g fj,g (3.a) 

Σ all incoming forces i ∈ same grain g fi,g ∧ ri,g = Σ all outgoing forces j ∈ same grain g fj,g ∧ ri,g  (3.b) 

The evolution of the force network corresponds to a succession of propagation and 
collision. The collision matrix can be written: 

{…,fi,outgoing,…}= Gg {…,fi,incoming,…} (4a) 

where Gg is a matrix whose coefficients depend strongly on the incoming forces and 
on the contact positions; but where Gg obeys Eq. (3) rules. Also Gg  may contain some 
random value and some indeterminacy, when the system is hyperstatic.  

Next step is the propagation to next grain; these rules can be written: 

{…,fj, incoming(x1+ α1igd,x2± α2igd,x3± α3igd),…}= {…,fi,outgoing(x1,x2,x3),…} (4.b) 

{…,Mj, incoming(x1+ α1igd,x2± α2igd,x3± α3igd),…}= {…, - Mi,outgoing(x1,x2,x3),…} (4.c) 

where one notes the negative sign in Eq. (4c), which is due to the action of the force fj, 

incoming on the next grain as explained above. It demonstrate that the momentums are 
not preserved during this step; it means that if the force tends to make the grain ga 
rotating in one direction this force tends to make rotating the grain ga+1 in the other 
direction, just because the centre of mass are symmetric compared to the point of 
application of the force. Also, d is the grain size in Eq. 4; here, it is assumed to be 
equal for all grains; and the α1ig are parameters which depends on the geometrical  
configuration.  

The sum of the rules Eq. 4a + Eqs 4(b&c) describe the complete collision-
propagation rules, from  a collision to another one.  
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So the objects which are colliding and propagating are the contact forces. It is 
worth noting at last that the number of forces is not preserved during collisions, 
because it depends on the number of contacts a grain has, which is a local random 
variable. This differs from numerous collision problems, where the number of 
particles that collide at a time is preserved; this is the case with liquid and gases. 
However, chemical reactions are well known examples which do not preserve particle 
numbers.   

3. Solving the force propagation network using the formalism of the Boltzmann 
equation   

Problems of collision and propagation are often solved using the formalism of the 
Boltzmann’s equation. This is why it is tempting to do the same. A first step is to try 
and solve the stationary problem which implies ∂ρ/∂t=0.  

So let us consider a given distribution ρ(F) of force F in the cut (a), one wants to 
estimate the evolution of this distribution at step (a+1). It is modified by a series of 
possible collisions. Some of them destroy the considered force; some other generates it 
from other forces; hence ρ(F) at step (a) becomes ρ(F)+δρ(F) at step (a+1).  And the 
stationary condition ∂ρ/∂t=0 reads in the present case: δρ(F)/δx1=0, since x1 plays the 
role of time. 

Within the collision theory, the rate of disappearance of F is proportional to the 
probability of getting a collision with a contact force Fin equal to F, the other contact 
forces spanning over the different possibilities. The rate of appearance of F is 
proportional to the probability of getting a collision such as one of the generated forces 
is equal to F. 

So, if we consider that the force distribution is homogeneous and that no 
correlation exists between the forces in a same cut, we can write δρ(F) as the 
difference between the two terms. 

δρ(F)= Σconfiguration of g, such as one Fout=F ∫Gg Πj[ρ(Fout,j) dFout,j ]  –  

− Σconfiguration of g ∫Gg ρ(Fin,k=F) Πj≠k[ρ(Fin,j) dFin,j ] (5) 

And the stationary condition is obtained imposing δρ(F)= 0. 
 Eq. (5) looks rather complicated. It works even when the number of contacts 

varies as a function of the grain and of the cut. But as we are looking for a 
homogeneous system in a stationary regime, we shall expect that δρ(F)=0 in mean. As 
a matter of fact, as in each cut all the inward forces disappear to be replaced by 
outward forces of different values, Eq. (5) contains a large number of sums; so it is not 
obvious that the way Eq. (5) describes the problem is a simplified manner.  

At last, but not least, the second (last) term of the right hand side of Eq. (5) 
describes the disappearance of F, while its first term describes the appearance of F. As 
a matter of fact the appearance of F occurs on the next grain; to evaluate its 
probability, one has to use the complete procedure described by Eqs. (4.a, b & c). 
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Hence it is a combination of two events, which are a collision and a propagation, 
which makes the equation rather complicated. 

However, as it will be shown now, we may use the symmetry of the system and 
the preserving rules we have described already (Eq.3) to get simplification. In fact if 
we can enforce the use of preserving rules in the description of the system, we may 
introduce the correlations that are missing in most of the descriptions. 

 For instance, we may expect that the preserving rules (Eq. 3) are the main reason 
why local correlations exist, are generated and propagate; for instance, this ensures 
that large forces to propagate a while, because they can not sink into a single grain. On 
the other hand, we may expect* that the larger the sensitivity of the matrix Gg  to local 
conditions the better the decorrelation between adjacent forces.  

4. Symmetry   

As the sample is (i) homogeneous, (ii) is in static equilibrium and (iii) is subject to a 
homogeneous stress, we may consider the propagation of force in +x1 direction or in 
the reverse direction, i.e –x1. This shall not change the problem. Furthermore, looking 
at a slice does not allow to recognise the upward direction from the downward. So the 
two problems are equivalent. For instance if we consider a precise grain and cut, and a 
direction of propagation; this is called system 1; on this system we can reverse the 
propagating direction, this interchanges the sets of {.., Fin ,…} with {.., Fout ,…} and 
conversely; and this produces system 1’. But due to the symmetry of the sample and of 
force network, this new configuration can certainly correspond to a system 2, 
corresponding to a grain 2, with forces propagating in the direction of system 1; grain 
2 is somewhere else in the cut. In this case, we can pair the two systems 1 and 2.  

5. Stationary solution in case of homogeneous sample in a uniform stress field   

Hence the stationary solution ρs(F) is the one which satisfies that ρs(Fin) is produced 
by a set of ρs(Fout) and ρs(Fout) is produced by a set of ρs(Fin). In other words, the 
stationary problem is solved if one finds ρs(F) that satisfies each pair: 

Gg {Πj[ρs(Fout,j)]  – Πk ρs(Fin,k) } =0 (6) 

 Solutions of Eq. (6) require that Πj[ρs(Fout,j)]= Πk[ρs(Fin,k)] for a given collision. 
Hence it requires that Πj[ρs(Fout,j) ] depends on the invariant of the collision only. 
These invariants are sums of variables I. Furthermore, the only solutions for 
ρs=ρstationary are those which can be written as exponentials of linear combination of 
these variables. 

ρstationary(F)= exp{-Σp ap Ip} (7) 
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Indeed, replacing [ρs by Eq. (7) in Eq. (6) ensures to get 0. In Eq. (7) the ap are 
constant from collisions to collisions because it defines ρ, and the Ip depends on the 
impact parameter Ip which is then depending on and related to F. The impact 
parameters whose sums are preserved during collisions are the sum of forces and the 
sum of momentums.  They are 3 in 2d, i.e. { Σj Fx,j , Σj Fy,j , Σj (Fx,j ry,j - Fy,j rx,j) = ΣjMzj} 
and 6 in 3d , i.e. { Σj Fx,j , Σj Fy,j , Σj Fz,j , Σj (Fy,j rz,j – Fz,j ry,j) =ΣjMxj, Σj (Fz,j rx,j – Fx,j 
rz,j)= ΣjMyj, Σj (Fx,j ry,j - Fy,j rx,j)= ΣjMzj }. Here {Fx, Fy, Fz } stand for the 3 components 
of forces and {rx, ry, rz } stand for the 3 components of contact position in the mass 
centre of the considered grain. 
 The most general way to write ρs that satisfies mean stationary condition at local 
stage, that is to say which satisfies Eq. (6) is then: 

 ρs(F)= exp{-axFx-ayFy -b [Fxry-Fyrx]} (8.a) 

ρs(F)= exp{-ax Fx -ay Fy -az Fz -bx [Fyrz-Fzry] -by [Fzrx-Fxrz] -bz [Fxry-Fyrx]} (8.b) 

We note that the last term in Eq. (8.a) and the 3 last ones in Eq. (8.b) depend on 
the normal at contact point when the grains are disks or spheres. So using the 
distribution of contact orientation may be adequate in such a case; however, this is no 
more exact as soon as the grain shape is more complex. Hence the use of contact 
orientation may still be approximating if the grains are round, but it is likely totally 
inadequate in case of non convex grains.  

Parameters ax, ay, az and bx , by, bz are the inverses of the mean force components 
and mean momentums in direction x, y and z, i.e. ax=1/<Fx>, ay=1/<Fy>, az=1/<Fz>, 
bx=1/<Mx>, by=1/<My>, bz=1/<Mz>; parameters bx , by, bz are the inverse of the mean 
of momentums components exerted by a single contact force on a grain. Both series 
can be viewed as inversed of peculiar temperatures. 

Parameters b/a depend on the distribution of contacts and on the orientation of the 
force at the contact on the grain. They depend on the friction angle ϕ of the contacts 
since ϕ limits the maximum torque-to-force ratio at limit of equilibrium; however, this 
may not be a simple relation; also the b/a values can be different from to the predicted 
limit in case of hyperstaticity.  

6. Few Remarks   

•  The form of ρs has been taken to impose grain equilibrium; then this form of ρs 
allows the preservation of forces and momentums during collisions; in other 
word, ρs allows the preservation of forces and momentums in statics.  

• The counterpart of this choice has been to introduce a single density of contacts, 
that means that the density of contact does not depend on the orientation at this 
stage of the model. The model imposes a mean number of contacts; then it 
imposes a mean number of contacts per grain if all grains are identical 
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• The choice of bx , by, bz controls the momentums; hence these coefficients 
controls the mean torque applied by a force; hence they depend on the mean 
friction forces.  

• Anisotropy of contacts: In this model, the contacts seem to be oriented in all 
directions equivalently. However, the scales on x1, x2 and x3 have not yet been 
defined at the moment; they were just supposed to be the same. But, the theory 
can be likely adapted to the case of an anisotropic model, with different length 
scales. For instance, let us defined different scales λ1, λ2, λ3 for the three axes 
x1, x2, x3 respectively, and the model applies directly to an anisotropic medium 
with an anisotropic distribution of contacts that depend on the contact 
orientation. As the length is different in each direction, this forces also to 
consider unit of forces as different in the 3 main directions, in order to ensure 
that the momentum balance is correctly written. 

• The proposed model applies to the case of a single kind of grain only, and when 
the grains are spherical. When different sizes of grains are forming the sample, 
or when they are not spherical, the force transmission from grain to grain 
cannot be described by Eqs. (4b & 4c) as simply; but specific relations have to 
be written taking account of the probabilities of contacts between large-large, 
small-small, small-large & large-small pairs of grains and/or taking into 
account the distribution of possible orientations of the two grains. As noted 
earlier, one of the main difficulties comes from the non preservation of the 
momentums {Mx, My, Mz} through a contact in this case. However, the force 
remains transmitted correctly in accordance with the action-reaction principle. 
It results from this last preservation rule that some relation still exists between 
the different distributions in the stationary state. However things are made 
more complicated because of segregation, as sown here after.  

• Link to segregation: Indeed, when 
different sizes of grains are 
forming the sample, one knows 
that segregation occurs. It 
implies that pairs of grains may 
not be uniformly distributed in 
the sample, so that large-small 
pairs of grains are oriented in a 
preferred direction, say +x1, 
rather than in the opposite one, 
say –x1. This makes the 
assumption of “time” reversal 
non valid anymore locally. This 
means a partial breaking of 
symmetry of the time reversal at 
least. This symmetry upon 

θ 

D
D’ 

Fig. 3 : When two large grains are in
contact, their interaction excludes a
large volume where no small grain can
enters and make contact with one of
these two grains.  
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“time” can be even completely broken in case of gravity. This demonstrate that 
the analogues of Eqs. (4b &c) are much more complex. Also other problems 
arise, such as the effect of correlations between 3 grains as it is exemplified in 
Fig. 3: the distribution of contacts between 3 grains of different sizes present 
an excluded volume which screen part of the possible contact area of the larger 
grains….  

 

7. Conclusion: 

The aim of this paper is to investigate the distribution of contact forces in a granular 
material made of mono-disperse spheres and subject to a uniform triaxial stress. The 
basic idea of the present paper is to decompose the system in parallel slices and to 
order them in a direction perpendicular to the cuts; these cuts cut grains; then each cut 
grain is considered as a force transmitter, with incoming forces (which are those ones 
from one side of the cut) and the outgoing ones (which are those ones from the other 
side). This allows mapping the problem as a force propagation process. Then one can 
assume that the force obeys a given distribution ρ(f) that evolves through the 
propagation process. 

Then the paper uses a way rather similar to the one used by Boltzmann, when he 
developed the formalism of the Boltzmann’s equation for gases, that describes the 
evolution of the probability density of the state of a single atom. In the case of perfect 
gases however, this approach can be used to demonstrate the principle of maximum 
disorder, by establishing the H theorem using conservation laws of energy and 
momentums. Then one can find the stationary solution of the distribution as the one 
which has the maximum disorder for a given mean energy.  In the present case the 
stationarity cannot be demonstrated, but the difficulty is got round. 

So the present paper pursues an analogy with the Boltzmann’s approach, finding 
an equation of evolution of the distribution of contact forces in a granular medium 
subject to a given stress; for this, a space coordinate is transformed into “time”. Then 
it analyses the evolution as a collision process, for which the conservation rules have 
been identified and ensure the stability of local equilibrium; then these rules are used 
to find a solution which is stationary. Unlike the Boltzmann theory of gas, one cannot 
demonstrate that the present force distribution shall be stationary; so it is one of the 
key hypotheses of this model. But it is a reasonable one, since assuming that both (i) 
the packing structure and (ii) the stress field are homogeneous is sufficient to imply 
that the contact force distribution is stationary. It means that the force distribution shall 
be the same on any surface perpendicular to a given direction, and shall depend only 
on this direction. Then conservation rules are used to enforce a set of possible 
distributions ρstat(f) which remain invariant along propagation, i.e. stationary. This 
imposes an exponential distribution which depends on 6 parameters {ax=1/<Fx>, 
ay=1/<Fy>, az=1/<Fz>, bx=1/<Mx>, by=1/<My>, bz=1/<Mz>}, which are the mean-
force- and mean-momentum- components. 
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An important corollary (or consequence) of this study is the following: if one 
finds an experimental distribution ρexp(f) that is different from the ρstat(f), then it 
probably means that this experimental distribution ρexp(f) is not stationary and the 
stress field not uniform. 
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